
MATLAB® Compiler SDK™

.NET User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ .NET User's Guide
© COPYRIGHT 2002–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 6.0 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Getting Started
1

MATLAB Compiler SDK .NET Target Prerequisites 1-2
Microsoft .NET Framework Installation 1-2
MATLAB Compiler SDK .NET Limitations 1-2

Supported Microsoft .NET Framework Versions 1-3

Integrate a .NET Assembly Into a C# Application 1-4
Running the Component Installer . 1-6

Magic Square Component in a C# Application 1-8

Component Integration
2

Common Integration Tasks . 2-2

Integrate a .NET Assembly Into a C# Application 2-3
Running the Component Installer . 2-5

Component and Class Naming Conventions 2-7

Data Conversion . 2-8
Managing Data Conversion Issues with MATLAB Compiler

SDK .NET Data Conversion Classes 2-8
Automatic Casting to MATLAB Types 2-9
Manual Data Conversion from Native Types to MATLAB

Types . 2-11
Return Value Handling . 2-15

iv Contents

Real or Imaginary Components Within Complex Arrays . . 2-20
Component Extraction . 2-20
Returning Values Using Component Indexing 2-20
Assigning Values with Component Indexing 2-21
Converting MATLAB Arrays to .NET Arrays Using Component

Indexing . 2-21

Jagged Array Processing . 2-22

Block Console Display When Creating Figures 2-23
WaitForFiguresToDie Method . 2-23
Using WaitForFiguresToDie to Block Execution 2-23

Error Handling . 2-26

Freeing Resources Explicitly . 2-28

Object Passing by Reference . 2-29
MATLAB Array . 2-29
Wrappering and Passing .NET Objects with MWObjectArray 2-29

Component Access On Another Computer 2-32

For More Information . 2-33

C# Integration Examples
3

Simple Plot (C#) . 3-2
Purpose . 3-2
Procedure . 3-2

Passing Variable Arguments (C#) . 3-6

Spectral Analysis (C#) . 3-10
Purpose . 3-10
Procedure . 3-11

Matrix Math (C#) . 3-15
Purpose . 3-15

v

Procedure . 3-16
MATLAB Functions to Be Encapsulated 3-19
Understanding the MatrixMath Program 3-20

Phone Book (C#) . 3-21
Purpose . 3-21
Procedure . 3-21

Optimization (C#) . 3-26
Purpose . 3-26
OptimizeComp Component . 3-26
Procedure . 3-27

Microsoft Visual Basic Integration Examples
4

Magic Square (Visual Basic) . 4-2

Create Plot Example (Visual Basic) . 4-5

Variable Arguments (Visual Basic) . 4-7

Spectral Analysis (Visual Basic) . 4-10

Matrix Math (Visual Basic) . 4-14

Phone Book (Visual Basic) . 4-18
makephone Function . 4-18
Procedure . 4-18

Optimization (Visual Basic) . 4-23
Optimization Example . 4-23

Distribute Integrated .NET Applications
5

Package .NET Applications . 5-2

vi Contents

About the MATLAB Runtime . 5-3
How is the MATLAB Runtime Different from MATLAB? 5-3
Performance Considerations and the MATLAB Runtime 5-4

Download the MATLAB Runtime Installer 5-5

Install the MATLAB Runtime . 5-6
Install the MATLAB Runtime Interactively 5-6
Install the MATLAB Runtime Non-Interactively 5-7

MATLAB and MATLAB Runtime on Same Machine 5-10
Modifying the Path . 5-10

Multiple MATLAB Runtime on Single Machine 5-11

Uninstall MATLAB Runtime . 5-12
Windows . 5-12
Linux . 5-12
Mac . 5-12

Distribute to End Users
6

Deploy Components to End Users . 6-2
Install MATLAB Runtime . 6-2

MATLAB Runtime Run-Time Options 6-5
What Run-Time Options Can You Specify? 6-5
Getting MATLAB Runtime Option Values Using MWMCR . . 6-5

The MATLAB Runtime User Data Interface 6-7
Supplying Cluster Profiles for Parallel Computing Toolbox

Applications . 6-7

MATLAB Runtime Component Cache and Deployable Archive
Embedding . 6-12

Impersonation Implementation Using ASP.NET 6-14

Enhanced XML Documentation Files 6-18

vii

Type-Safe Interfaces, WCF, and MEF
7

Type-Safe Interfaces: An Alternative to MWArray 7-2

Advantages of Implementing a Type-Safe Interface 7-4

How Type-Safe Interfaces Work . 7-5

Generate the Type-Safe API with an Assembly 7-8
Use the Library Compiler App . 7-8
Use the Command-Line Tools . 7-8

Implement a Type-Safe Interface . 7-10
Data Conversion Rules for Using the Type-Safe Interface . . 7-11

Create Managed Extensibility Framework (MEF) Plug-Ins 7-12
What Is MEF? . 7-12
MEF Prerequisites . 7-13
Addition and Multiplication Applications with MEF 7-13

Web Deployment of Figures and Images
8

Install WebFigureControl Into Microsoft Visual Studio
Toolbox . 8-2

Quick Start Implementation of WebFigures 8-3
Overview . 8-3
Assumptions About the Example . 8-3
Procedure . 8-4

Advanced Configuration of a WebFigure 8-9
Overview . 8-9
Manually Installing WebFigureService 8-11
Retrieving Multiple WebFigures From a Component 8-13
Attaching a WebFigure . 8-15
Setting Up WebFigureControl for Remote Invocation 8-17

viii Contents

Getting an Embeddable String That References a WebFigure
Attached to a WebFigureService 8-19

Improving Processing Times for JavaScript Using
Minification . 8-21

Using Global Assembly Cache (Global.asax) to Create
WebFigures at Server Start-Up . 8-21

Upgrade Your WebFigures . 8-24

Troubleshoot WebFigures . 8-25

WebFigures Logging Levels . 8-27

Create and Modify a MATLAB Figure 8-28
Preparing a MATLAB Figure for Export 8-28
Changing the Figure (Optional) . 8-28
Exporting the Figure . 8-29
Cleaning Up the Figure Window . 8-29
Modify and Export Figure Data . 8-29

Work with Images . 8-31
Getting Encoded Image Bytes from an Image in a

Component . 8-31
Getting a Buffered Image in a Component 8-31
Getting Image Data from a WebFigure 8-32

Windows Communications Foundation Based
Components

9
What Is Windows Communications Foundation? 9-2

What’s the Difference Between WCF and .NET Remoting? . . 9-2
For More information About WCF . 9-2

Create Windows Communications Foundation Based
Components . 9-3

Before Running the Example . 9-3
Deploying a WCF-Based Component 9-3

ix

.NET Remoting
10

What Is .NET Remoting? . 10-2
What Are Remotable Components? 10-2
Benefits of Using .NET Remoting . 10-2
What’s the Difference Between WCF and .NET Remoting? . 10-2

.NET Remoting Prerequisites . 10-4

Select How Access an Assembly . 10-5
Using Native .NET Structure and Cell Arrays 10-6

Create a Remotable .NET Assembly 10-7
Building a Remotable Component Using the Library Compiler

App . 10-7
Building a Remotable Component Using the mcc Command 10-8
Files Generated by the Compilation Process 10-9

Access a Remotable .NET Assembly Using MWArray 10-10
Why Use MWArray API? . 10-10
Coding and Building the Hosting Server Application and

Configuration File . 10-10
Coding and Building the Client Application and Configuration

File . 10-12
Starting the Server Application . 10-15
Starting the Client Application . 10-15

Access a Remotable .NET Assembly Using the Native .NET
API: Magic Square . 10-16

Why Use the Native .NET API? . 10-16
Coding and Building the Hosting Server Application and

Configuration File . 10-16
Coding and Building the Client Application and Configuration

File . 10-18
Starting the Server Application . 10-21
Starting the Client Application . 10-21

Access a Remotable .NET Assembly Using the Native .NET
API: Cell and Struct . 10-23

Why Use the .NET API With Cell Arrays and Structs? . . . 10-23
Building Your Component . 10-23

x Contents

The Native .NET Cell and Struct Example 10-23
Coding and Building the Client Application and Configuration

File . 10-24
Starting the Server Application . 10-27
Starting the Client Application . 10-28
Coding and Building the Client Application and Configuration

File with the Native MWArray, MWStructArray, and
MWCellArray Classes . 10-29

Troubleshooting
11

View the Latest Build Log . 11-2

Failure to Find a Required File . 11-3

Diagnostic Messages . 11-4
Enhanced Error Diagnostics Using mstack Trace 11-5

Reference Information
12

Requirements for the MATLAB Compiler SDK .NET
Target . 12-2

System and Product Requirements 12-2
Path Modifications Required for Accessibility 12-2

Data Conversion Rules . 12-3
Managed Types to MATLAB Arrays 12-3
MATLAB Arrays to Managed Types 12-3
.NET Types to MATLAB Types . 12-4
Character and String Conversion . 12-9
Unsupported MATLAB Array Types 12-9

Overview of Data Conversion Classes 12-10
Overview . 12-10
Returning Data from MATLAB to Managed Code 12-10

xi

Example of MWNumericArray in a .NET Application 12-11
Interfaces Generated by the MATLAB Compiler SDK .NET

Target . 12-11

Function Reference
13

Deploying .NET Components With the F#
Programming Language

A
Magic Square Using F# . A-2

Prerequisites . A-2
Step 1: Build the Component . A-2
Step 2: Integrate the Component Into an F# Application A-2
Step 3: Deploy the Component . A-4

1

Getting Started

• “MATLAB Compiler SDK .NET Target Prerequisites” on page 1-2
• “Supported Microsoft .NET Framework Versions” on page 1-3
• “Integrate a .NET Assembly Into a C# Application” on page 1-4
• “Magic Square Component in a C# Application” on page 1-8

1 Getting Started

1-2

MATLAB Compiler SDK .NET Target Prerequisites

In this section...

“Microsoft .NET Framework Installation” on page 1-2
“MATLAB Compiler SDK .NET Limitations” on page 1-2

Microsoft .NET Framework Installation

Install the supported version of the Microsoft® .NET Framework. Your ability to use the
latest MATLAB Compiler SDK functionality often depends on having the most current
version of the framework installed.

MATLAB Compiler SDK .NET Limitations

Using addAssembly (External Interfaces)

.NET assemblies or DLLs built with MATLAB Compiler SDK cannot be loaded back into
MATLAB with the .NET External Interface method addAssembly.

Serialization of MATLAB Objects Unsupported

There is no support in MATLAB Compiler SDK for serializing MATLAB objects from
MATLAB into .NET code.

 Supported Microsoft .NET Framework Versions

1-3

Supported Microsoft .NET Framework Versions

MATLAB Compiler SDK supports the following versions of Microsoft .NET Framework.

• 2.0
• 3.0
• 3.5
• 4.0 (Managed Extensibility Framework feature only)
• 4.5

1 Getting Started

1-4

Integrate a .NET Assembly Into a C# Application
This example shows how to call a .NET assembly built with MATLAB Compiler SDK
from a C# application.

1 Install the .NET assembly and the MATLAB Runtime.

The creator of the assembly makes these files available by distributing the installer
created by MATLAB Compiler SDK during the build process. The installer is located
in the for_redistribution folder of your deployment project. The installer places
the .NET assembly on your computer and automatically installs the MATLAB
Runtime from the web, if you do not already have the MATLAB Runtime installed on
your system.

You can also download the MATLAB Runtime installer from http://
www.mathworks.com/products/compiler/mcr. The generated shared libraries and
support files are located in the MATLAB deployment project's for_testing folder.

2 Open Microsoft Visual Studio®

3 Create a new project.

For this example create a C# Console Application called MainApp.
4 Create a reference to your assembly.

The assembly is located in the application folder created when you installed the
component. For this example, select makeSqr.dll.

5 Create a reference to the MWArray API.

The API is located in MATLABROOT\toolbox\dotnetbuilder\bin
\arch\version\MWArray.dll.

6 Make .NET Namespaces available to your generated component and MWArray
libraries. Add the following using statements to your C#/.NET code:

using com.component_name;

using MathWorks.MATLAB.NET.Arrays;

using MathWorks.MATLAB.NET.Utility;

In this example name the component demo.
7 Initialize your classes before you use them.

namespace mainApp

{

 class Program

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

 Integrate a .NET Assembly Into a C# Application

1-5

 {

 static void Main(string[] args)

 {

 MLTestClass obj = null;

 MWNumericArray input = null;

 MWNumericArray output = null;

 MWArray[] result = null;

 }

 }

}

8 Instantiate your component class.

obj = new MLTestClass();

9 Invoke your component. After you complete the tasks of initializing and instantiating
the classes you are working with, invoke the makeSqr component. Invoke the
component method using a signature containing both the number of output
arguments expected and the number of input arguments the MATLAB function
requires.

When calling your component, you can take advantage of implicit conversion
from .NET types to MATLAB types, by passing the native C# value directly to
makeSqr:

input = 5;

obj.makeSqr(1, input);

You can also use explicit conversion:

input = new MWNumericArray(5);

obj.makeSqr(1, input);

10 The makeSqr method returns an array of MWArray.

Extract the Magic Square you created from the first indice of result and print the
output, as follows:

output = (MWNumericArray)result[0];

Console.WriteLine(output);

11 Because class instantiation and method invocation make their exceptions at run-
time, you should enclose your code in a try-catch block to handle errors.

using System;

using System.Collection.Generic;

using System.Text;

1 Getting Started

1-6

using com.demo;

using MathWorks.MATLAB.NET.Arrays;

using MathWorks.MATLAB.NET.Utility;

namespace mainApp

{

 class Program

 {

 static void Main(string[] args)

 {

 MLTestClass obj = null;

 MWNumericArray input = null;

 MWNumericArray output = null;

 MWArray[] result = null;

 try

 {

 obj = new MLTestClass();

 input = 5;

 result = obj.makeSqr(1, input);

 output = (MWNumericArray)result[0];

 Console.WriteLine(output);

 }

 catch

 {

 throw;

 }

 }

 }

}

12 After you finish writing your code, you build and run it with Microsoft Visual Studio.

Running the Component Installer

MATLAB Compiler SDK creates an installer for the generated .NET component. After
compilation is complete, you can find this installer in the for_redistribution
folder in your project folder. By default, the compiler names the installer
MyAppInstaller_web.exe or MyAppInstaller_mcr.exe, depending on which
packaging option you chose. Using the Application Information area of the Library
Compiler app, you can customize the look of the installer.

 Integrate a .NET Assembly Into a C# Application

1-7

For example, when an end-user double-clicks the component installer, the first screen
identifies you component by name and version number.

By clicking Next on each screen, the installer leads you through the installation
process. During installation, you can specify the installation folder. The installer also
automatically downloads the MATLAB Runtime, if needed.

1 Getting Started

1-8

Magic Square Component in a C# Application

1 Write source code for an application that uses the .NET component created in
“Create a .NET Assembly”.

The C# source code for the sample application for this example is in
MagicSquareExample\MagicSquareCSApp\MagicSquareApp.cs.

Tip Although MATLAB Compiler SDK generates C# code for the MagicSquare
component and the sample application is in C#, applications that use the component
do not need to be coded in C#. You can access the component from any CLS-
compliant .NET language.

2 Build the application using Visual Studio .NET.

Note: In the project file for this example, the MWArray assembly and the magic
square component assembly have been prereferenced. Any references preceded by an
exclamation point require you to remove the reference and rereference the affected
assembly.

Note: Microsoft .NET Framework version 2.0 is not supported by Visual Studio 2003.

a Open the project file for the Magic Square example
(MagicSquareCSApp.csproj) in Visual Studio .NET.

b Add a reference to the MWArray component in matlabroot\toolbox
\dotnetbuilder\bin\

architecture\framework_version.

See “Supported Microsoft .NET Framework Versions” on page 1-3 for a list of
supported framework versions.

c If necessary, add a reference to the Magic Square component
(MagicSquareComp), which is in the distrib subfolder.

2

Component Integration

• “Common Integration Tasks” on page 2-2
• “Integrate a .NET Assembly Into a C# Application” on page 2-3
• “Component and Class Naming Conventions” on page 2-7
• “Data Conversion” on page 2-8
• “Real or Imaginary Components Within Complex Arrays” on page 2-20
• “Jagged Array Processing” on page 2-22
• “Block Console Display When Creating Figures” on page 2-23
• “Error Handling” on page 2-26
• “Freeing Resources Explicitly” on page 2-28
• “Object Passing by Reference” on page 2-29
• “Component Access On Another Computer” on page 2-32
• “For More Information” on page 2-33

2 Component Integration

2-2

Common Integration Tasks

In “Magic Square Component in a C# Application” on page 1-8, and in “Integrate
a .NET Assembly Into a C# Application” on page 1-4 in particular, steps are illustrated
that cover the basics of customizing your code in preparation for integrating your
deployed .NET component into a large-scale enterprise application. These steps include:

• Installing the MATLAB Runtime on end user computers
• Creating a Microsoft Visual Studio project
• Creating references to the component and to the MWArray API
• Specifying component assemblies and namespaces
• Initializing and instantiating your classes
• Invoking the component using some implicit data conversion techniques
• Handling errors using a basic try-catch block.

 Integrate a .NET Assembly Into a C# Application

2-3

Integrate a .NET Assembly Into a C# Application

This example shows how to call a .NET assembly from a C# application.

1 Install the .NET assembly and the MATLAB Runtime.

The assembly and the runtime are both installed by the Library Compiler app. The
installer is located in the for_redistribution folder of your deployment project.
The installer places the .NET assembly on your computer and automatically installs
the MATLAB Runtime from the Web, if you do not already have the MATLAB
Runtime installed on your system.

You can also download the MATLAB Runtime installer from http://
www.mathworks.com/products/compiler/mcr. The generated shared libraries and
support files are located in the MATLAB deployment project's for_testing folder.

2 Open Microsoft Visual Studio
3 Create a new project.

For this example create a C# Console Application called MainApp.
4 Create a reference to your assembly.

The assembly is located in the application folder created when you installed the
component. For this example, select makeSqr.dll.

5 Create a reference to the MWArray API.

The API is located in MATLABROOT\toolbox\dotnetbuilder\bin
\arch\version\MWArray.dll.

6 Make .NET Namespaces available to your generated component and MWArray
libraries. Add the following using statements to your C#/.NET code:

using com.component_name;

using MathWorks.MATLAB.NET.Arrays;

using MathWorks.MATLAB.NET.Utility;

In this example name the component demo.
7 Initialize your classes before you use them.

namespace mainApp

{

 class Program

 {

 static void Main(string[] args)

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

2 Component Integration

2-4

 {

 MLTestClass obj = null;

 MWNumericArray input = null;

 MWNumericArray output = null;

 MWArray[] result = null;

 }

 }

}

8 Instantiate your component class.

obj = new MLTestClass();

9 Invoke your component. After you complete the tasks of initializing and instantiating
the classes you are working with, invoke the makeSqr component. Invoke the
component method using a signature containing both the number of output
arguments expected and the number of input arguments the MATLAB function
requires.

When calling your component, you can take advantage of implicit conversion
from .NET types to MATLAB types, by passing the native C# value directly to
makeSqr:

input = 5;

obj.makeSqr(1, input);

You can also use explicit conversion:

input = new MWNumericArray(5);

obj.makeSqr(1, input);

10 The makeSqr method returns an array of MWArrays

Extract the Magic Square you created from the first indice of result and print the
output, as follows:

output = (MWNumericArray)result[0];

Console.WriteLine(output);

11 Because class instantiation and method invocation make their exceptions at run
time, you should enclose your code in a try-catch block to handle errors.

using System;

using System.Collection.Generic;

using System.Text;

using com.demo;

using MathWorks.MATLAB.NET.Arrays;

 Integrate a .NET Assembly Into a C# Application

2-5

using MathWorks.MATLAB.NET.Utility;

namespace mainApp

{

 class Program

 {

 static void Main(string[] args)

 {

 MLTestClass obj = null;

 MWNumericArray input = null;

 MWNumericArray output = null;

 MWArray[] result = null;

 try

 {

 obj = new MLTestClass();

 input = 5;

 result = obj.makeSqr(1, input);

 output = (MWNumericArray)result[0];

 Console.WriteLine(output);

 }

 catch

 {

 throw;

 }

 }

 }

}

12 After you finish writing your code, you build and run it with Microsoft Visual Studio.

Running the Component Installer

The compiler creates an installer for the generated .NET component. After compilation is
complete, you can find this installer in the for_redistribution folder in your project
folder. By default, the compiler names the installer MyAppInstaller_web.exe or
MyAppInstaller_mcr.exe, depending on which packaging option you chose. Using the
Application Information area of the Library Compiler app, you can customize the look of
the installer.

For example, when an end-user double-clicks the component installer, the first screen
identifies you component by name and version number.

2 Component Integration

2-6

By clicking Next on each screen, the installer leads you through the installation
process. During installation, you can specify the installation folder. The installer also
automatically downloads the MATLAB Runtime, if needed.

 Component and Class Naming Conventions

2-7

Component and Class Naming Conventions

Typically you should specify names for assemblies and classes that will be clear to
programmers who use the generated code. For example, if you are encapsulating many
MATLAB functions, it helps to determine a scheme of function categories and to create
a separate class for each category. Also, the name of each class should be descriptive of
what the class does.

The .NET naming guidelines recommends the use of Pascal case for capitalizing the
names of identifiers of three or more characters. That is, the first letter in the identifier
and the first letter of each subsequent concatenated word are capitalized. For example:

 MakeSquare

In contrast, MATLAB programmers typically use all lowercase for names of functions.
For example:

makesquare

By convention, the MATLAB Compiler SDK .NET examples use Pascal case.

Valid characters are any alpha or numeric characters, as well as the underscore (_)
character.

http://msdn.microsoft.com/en-us/library/ms229002.aspx

2 Component Integration

2-8

Data Conversion

There are many instances when you may need to convert various native data types to
types compatible with MATLAB. Use this section as a guideline to performing some of
these basic tasks.

See “Data Conversion Rules” on page 12-3 for complete tables detailing type-to-type
data conversion rules using MATLAB Compiler SDK.

Managing Data Conversion Issues with MATLAB Compiler SDK .NET Data
Conversion Classes

To support data conversion between managed types and MATLAB types, MATLAB
Compiler SDK provides a set of data conversion classes derived from the abstract class,
MWArray.

The MWArray data conversion classes allow you to pass most native .NET value types
as parameters directly without using explicit data conversion. There is an implicit cast
operator for most native numeric and string types that will convert the native type to the
appropriate MATLAB array.

When you invoke a method on a component, the input and output parameters are a
derived type of MWArray. To pass parameters, you can either instantiate one of the
MWArray subclasses explicitly, or, in many cases, pass the parameters as a managed data
type and rely on the implicit data conversion feature of MATLAB Compiler SDK.

Overview of Classes and Methods in the Data Conversion Class Hierarchy

To support MATLAB data types, the MATLAB Compiler SDK product provides the
MWArray data conversion classes in the MWArray assembly. You reference this assembly
in your managed application to convert native arrays to MATLAB arrays and vice versa.

See the MWArray API documentation for full details on the classes and methods
provided.

The data conversion classes are built as a class hierarchy that represents the major
MATLAB array types.

 Data Conversion

2-9

Note: For information about these data conversion classes, see the MATLAB MWArray
Class Library Reference, available in the matlabroot\help\dotnetbuilder
\MWArrayAPI folder, where matlabroot represents your MATLAB installation folder

The root of the hierarchy is the MWArray abstract class. The MWArray class has the
following subclasses representing the major MATLAB types: MWNumericArray,
MWLogicalArray, MWCharArray, MWCellArray, and MWStructArray.

MWArray and its derived classes provide the following functionality:

• Constructors and destructors to instantiate and dispose of MATLAB arrays
• Properties to get and set the array data
• Indexers to support a subset of MATLAB array indexing
• Implicit and explicit data conversion operators
• General methods

Automatic Casting to MATLAB Types

Note: Because the conversion process is typically automatic, you do not need to
understand the conversion process to pass and return arguments with MATLAB
Compiler SDK .NET assemblies.

In most instances, if a native .NET primitive or array is used as an input parameter
in a C# program, the MATLAB Compiler SDK product transparently converts it to an
instance of the appropriate MWArray class before it is passed on to the generated method.
The MATLAB Compiler SDK product can convert most CLS-compliant string, numeric
type, or multidimensional array of these types to an appropriate MWArray type.

Note: This conversion is transparent in C# applications, but might require an explicit
casting operator in other languages, for example, op_implicit in Visual Basic®.

Here is an example. Consider the .NET statement:

result = theFourier.plotfft(3, data, interval);

2 Component Integration

2-10

In this statement the third argument, namely interval, is of the .NET native type
System.Double. The MATLAB Compiler SDK product casts this argument to a
MATLAB 1-by-1 double MWNumericArray type (which is a wrapper class containing a
MATLAB double array).

See “Data Conversion Rules” on page 12-3 for a list of all the data types that are
supported along with their equivalent types in the MATLAB product.

Note: There are some data types commonly used in the MATLAB product that are
not available as native .NET types. Examples are cell arrays, structure arrays, and
arrays of complex numbers. Represent these array types as instances of MWCellArray,
MWStructArray, and MWNumericArray, respectively.

Multidimensional Array Processing in MATLAB and .NET

MATLAB and .NET implement different indexing strategies for multidimensional arrays.
When you create a variable of type MWNumericArray, MATLAB automatically creates an
equivalent array, using its own internal indexing. For example, MATLAB indexes using
this schema:

(row column page1 page2 ...)

while .NET indexes as follows:

(... page2 page1 row column)

Given the multi-dimensional MATLAB myarr:

>> myarr(:,:,1) = [1, 2, 3; 4, 5, 6];

>> myarr(:,:,2) = [7, 8, 9; 10, 11, 12];

>> myarr

myarr(:,:,1) =

 1 2 3

 4 5 6

myarr(:,:,2) =

 7 8 9

 10 11 12

 Data Conversion

2-11

You would code this equivalent in .NET:

double[,,] myarr = {{{1.000000, 2.000000, 3.000000},

{4.000000, 5.000000, 6.000000}}, {{7.000000, 8.000000,

9.000000}, {10.000000, 11.000000, 12.000000}}};

Manual Data Conversion from Native Types to MATLAB Types

• “Native Data Conversion” on page 2-11
• “Type Specification” on page 2-12
• “Optional Argument Specification” on page 2-12
• “Pass a Variable Number of Outputs” on page 2-14

Native Data Conversion

The MATLAB Compiler SDK product provides MATLAB array classes in order to
facilitate data conversion between native data and compiled MATLAB functions.

This example explicitly creates a numeric constant using the constructor for the
MWNumericArray class with a System.Int32 argument. This variable can then be
passed to one of the generated .NET methods.

int data = 24;

MWNumericArray array = new MWNumericArray(data);

Console.WriteLine("Array is of type " + array.NumericType);

When you run this example, the results are:

Array is of type double

In this example, the native integer (int data) is converted to an MWNumericArray
containing a 1-by-1 MATLAB double array, which is the default MATLAB type.

Tip To preserve the integer type, use the MWNumericArray constructor that provides the
ability to control the automatic conversion.

MWNumericArray array = new MWNumericArray(data, false);

The MATLAB Compiler SDK product does not support some MATLAB array types
because they are not CLS-compliant. See “Unsupported MATLAB Array Types” on page
12-9 for a list of the unsupported types.

2 Component Integration

2-12

For more information about the concepts involved in data conversion, see “Managing
Data Conversion Issues with MATLAB Compiler SDK .NET Data Conversion Classes” on
page 2-8.

Type Specification

If you want to create a MATLAB numeric array of a specific type, set the optional
makeDouble argument to False. The native type then determines the type of the
MATLAB array that is created.

Here, the code specifies that the array should be constructed as a MATLAB 1-by-1 16-bit
integer array:

short data = 24;

MWNumericArray array = new MWNumericArray(data, false);

Console.WriteLine("Array is of type " + array.NumericType);

Running this example produces the following results:

Array is of type int16

Optional Argument Specification

In the MATLAB product, varargin and varargout are used to specify arguments that
are not required. Consider the following MATLAB function:

function y = mysum(varargin)

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a varargin,
which means that the caller can specify any number of inputs to the function. The result
is returned as a scalar double array.

For the mysum function, the MATLAB Compiler SDK product generates the following
interfaces:

// Single output interfaces

public MWArray mysum()

public MWArray mysum(params MWArray[] varargin)

// Standard interface

public MWArray[] mysum(int numArgsOut)

public MWArray[] mysum(int numArgsOut,

 params MWArray[] varargin)

// feval interface

public void mysum(int numArgsOut, ref MWArray ArgsOut,

 params MWArray[] varargin)

 Data Conversion

2-13

The varargin arguments can be passed as either an MWArray[], or as a list of explicit
input arguments. (In C#, the params modifier for a method argument specifies that a
method accepts any number of parameters of the specific type.) Using params allows
your code to add any number of optional inputs to the encapsulated MATLAB function.

Here is an example of how you might use the single output interface of the mysum method
in a .NET application:

static void Main(string[] args]

{

MWArray sum= null;

MySumClass mySumClass = null;

try

 {

 mySumClass= new MySumClass();

 sum= mySumClass.mysum((double)2, 4);

 Console.WriteLine("Sum= {0}", sum);

 sum= mySumClass.mysum((double)2, 4, 6, 8);

 Console.WriteLine("Sum= {0}", sum);

 }

}

The number of input arguments can vary.

Note: For this particular signature, you must explicitly cast the first argument to
MWArray or a type other than integer. Doing this distinguishes the signature from the
method signature, which takes an integer as the first argument. If the first argument
is not explicitly cast to MWArray or as a type other than integer, the argument can be
mistaken as representing the number of output arguments.

Pass Input Arguments

The following examples show generated code for the myprimes MATLAB function, which
has the following definition:

function p = myprimes(n)

p = primes(n);

Construct a Single Input Argument

The following sample code constructs data as a MWNumericArray, to be passed as input
argument:

2 Component Integration

2-14

MWNumericArray data = 5;

MyPrimesClass myClass = new MyPrimesClass();

MWArray primes = myClass.myprimes(data);

Pass a Native .NET Type

This example passes a native double type to the function.

MyPrimesClass myClass = new MyPrimesClass();

MWArray primes = myClass.myprimes((double)13);

The input argument is converted to a MATLAB 1-by-1 double array, as required by the
MATLAB function. This is the default conversion rule for a native double type (see “Data
Conversion Rules” on page 12-3 for a discussion of the default data conversion for all
supported .NET types).

Use the feval Interface

The feval interface passes both input and output arguments on the right-hand side of
the function call. The output argument primes must be preceded by a ref attribute.

MyPrimesClassmyClass = new MyPrimesClass();

MWArray[] maxPrimes = new MWArray[1];

maxPrimes[0] = new MWNumericArray(13);

MWArray[] primes = new MWArray[1];

myClass.myprimes(1, ref primes, maxPrimes);

Pass a Variable Number of Outputs

When present, varargout arguments are handled in the same way that varargin
arguments are handled. Consider the following MATLAB function:

function varargout = randvectors()

for i=1:nargout

 varargout{i} = rand(1, i);

end

This function returns a list of random double vectors such that the length of the ith
vector is equal to i. The MATLAB Compiler SDK product generates a .NET interface to
this function as follows:

public void randvectors()

public MWArray[] randvectors(int numArgsOut)

public void randvectors(int numArgsOut, ref MWArray[] varargout)

 Data Conversion

2-15

Usage Example

Here, the standard interface is used and two output arguments are requested:

MyVarargOutClass myClass = new MyVarargOutClass();

MWArray[] results = myClass.randvectors(2);

Console.WriteLine("First output= {0}", results[0]);

Console.WriteLine("Second output= {0}", results[1]);

Return Value Handling

The previous examples show guidelines to use if you know the type and dimensionality
of the output argument. Sometimes, in MATLAB programming, this information is
unknown, or can vary. In this case, the code that calls the method might need to query
the type and dimensionality of the output arguments.

There are two ways to make the query:

• Use .NET reflection to query any object for its type.
• Use any of several methods provided by the MWArray class to query information about

the underlying MATLAB array.

.NET Reflection

You can use reflection to dynamically create an instance of a type, bind the type to an
existing object, or get the type from an existing object. You can then invoke the type's
methods or access its fields and properties. See the MSDN Library for more information
about reflection.

The following code sample calls the myprimes method, and then determines the type
using reflection. The example assumes that the output is returned as a numeric vector
array but the exact numeric type is unknown.

public void GetPrimes(int n)

{

 MWArray primes= null;

 MyPrimesClass myPrimesClass= null;

 try

 {

 myPrimesClass= new MyPrimesClass();

 primes= myPrimesClass.myprimes((double)n);

 Array primesArray= ((MWNumericArray)primes).

http://msdn.microsoft.com/library

2 Component Integration

2-16

 ToVector(MWArrayComponent.Real);

 if (primesArray is double[])

 {

 double[] doubleArray= (double[])primesArray;

 /* Do something with doubleArray . . . */

 }

 else if (primesArray is float[])

 {

 float[] floatArray= (float[])primesArray;

 /* Do something with floatArray . . . */

 }

 else if (primesArray is int[])

 {

 int[] intArray= (int[])primesArray;

 /*Do something with intArray . . . */

 }

 else if (primesArray is long[])

 {

 long[] longArray= (long[])primesArray;

 /*Do something with longArray . . . */

 }

 else if (primesArray is short[])

 {

 short[] shortArray= (short[])primesArray;

 /*Do something with shortArray . . . */

 }

 else if (primesArray is byte[])

 {

 byte[] byteArray= (byte[])primesArray;

 /*Do something with byteArray . . . */

 }

 else

 {

 throw new ApplicationException("

 Bad type returned from myprimes");

 }

 }

}

The example uses the toVector method to return a .NET primitive array
(primesArray), which represents the underlying MATLAB array. See the following code
fragment from the example:

primes= myPrimesClass.myprimes((double)n);

 Data Conversion

2-17

 Array primesArray= ((MWNumericArray)primes).

 ToVector(MWArrayComponent.Real);

Note: The toVector is a method of the MWNumericArray class. It returns a copy of the
array component in column major order. The type of the array elements is determined by
the data type of the numeric array.

MWArray Query

The next example uses the MWNumericArray NumericType method, along with
MWNumericType enumeration to determine the type of the underlying MATLAB array.
See the switch (numericType) statement.

public void GetPrimes(int n)

{

 MWArray primes= null;

 MyPrimesClass myPrimesClass= null;

 try

 {

 myPrimesClass= new MyPrimesClass();

 primes= myPrimesClass.myprimes((double)n);

 if ((!primes.IsNumericArray) || (2 !=

 primes.NumberofDimensions))

 {

 throw new ApplicationException("Bad type returned

 by mwprimes");

 }

 MWNumericArray _primes= (MWNumericArray)primes;

 MWNumericType numericType= _primes.NumericType;

 Array primesArray= _primes.ToVector(

 MWArrayComponent.Real);

 switch (numericType)

 {

 case MWNumericType.Double:

 {

 double[] doubleArray= (double[])primesArray;

 /* (Do something with doubleArray . . .) */

 break;

 }

 case MWNumericType.Single:

 {

 float[] floatArray= (float[])primesArray;

2 Component Integration

2-18

 /* (Do something with floatArray . . .) */

 break;

 }

 case MWNumericType.Int32:

 {

 int[] intArray= (int[])primesArray;

 /* (Do something with intArray . . .) */

 break;

 }

 case MWNumericType.Int64:

 {

 long[] longArray= (long[])primesArray;

 /* (Do something with longArray . . .) */

 break;

 }

 case MWNumericType.Int16:

 {

 short[] shortArray= (short[])primesArray;

 /* (Do something with shortArray . . .) */

 break;

 }

 case MWNumericType.UInt8:

 {

 byte[] byteArray= (byte[])primesArray;

 /* (Do something with byteArray . . .) */

 break;

 }

 default:

 {

 throw new ApplicationException("Bad type returned

 by myprimes");

 }

 }

 }

}

The code in the example also checks the dimensionality by calling
NumberOfDimensions; see the following code fragment:

if ((!primes.IsNumericArray) || (2 !=

 primes.NumberofDimensions))

 {

 throw new ApplicationException("Bad type returned

 by mwprimes");

 }

 Data Conversion

2-19

This call throws an exception if the array is not numeric and of the proper dimension.

2 Component Integration

2-20

Real or Imaginary Components Within Complex Arrays

In this section...

“Component Extraction” on page 2-20
“Returning Values Using Component Indexing” on page 2-20
“Assigning Values with Component Indexing” on page 2-21
“Converting MATLAB Arrays to .NET Arrays Using Component Indexing” on page
2-21

Component Extraction

When you access a complex array (an array made up of both real and imaginary data),
you extract both real and imaginary parts (called components) by default. This method
call, for example, extracts both real and imaginary components:

 MWNumericArray complexResult= complexDouble[1, 2];

It is also possible, when calling a method to return or assign a value, to extract only
the real or imaginary component of a complex matrix. To do this, call the appropriate
component indexing method.

This section describes how to use component indexing when returning or assigning a
value, and also describes how to use component indexing to convert MATLAB arrays
to .NET arrays using the ToArray or ToVector methods.

Returning Values Using Component Indexing

The following section illustrates how to return values from full and sparse arrays using
component indexing.

Implementing Component Indexing on Full Complex Numeric Arrays

To return the real or imaginary component from a full complex numeric array, call the
.real or .imaginary method on MWArrayComponent as follows:

 complexResult= complexDouble[MWArrayComponent.Real, 1, 2];

 complexResult= complexDouble[MWArrayComponent.Imaginary, 1, 2];

 Real or Imaginary Components Within Complex Arrays

2-21

Implementing Component Indexing on Sparse Complex Numeric Arrays (Microsoft Visual Studio
8 and Later)

To return the real or imaginary component of a sparse complex numeric array, call the
.real or .imaginary method MWArrayComponent as follows:
 complexResult= sparseComplexDouble[MWArrayComponent.Real, 4, 3];

 complexResult = sparseComplexDouble[MWArrayComponent.Imaginary, 4, 3];

Assigning Values with Component Indexing

The following section illustrates how to assign values to full and sparse arrays using
component indexing.

Implementing Component Indexing on Full Complex Numeric Arrays

To assign the real or imaginary component to a full complex numeric array, call the
.real or .imaginary method MWArrayComponent as follows:
 matrix[MWArrayComponent.Real, 2, 2]= 5;

 matrix[MWArrayComponent.Imaginary, 2, 2]= 7:

Converting MATLAB Arrays to .NET Arrays Using Component Indexing

The following section illustrates how to use the ToArray and ToVector methods
to convert full and sparse MATLAB arrays and vectors to .NET arrays and vectors
respectively.

Converting MATLAB Arrays to .NET Arrays

To convert MATLAB arrays to .NET arrays call the toArray method with either the
.real or .imaginary method, as needed, on MWArrayComponent as follows:
Array nativeArray_real= matrix.ToArray(MWArrayComponent.Real);

Array nativeArray_imag= matrix.ToArray(MWArrayComponent.Imaginary);

Converting MATLAB Arrays to .NET Vectors

To convert MATLAB vectors to .NET vectors (single dimension arrays) call the .real or
.imaginary method, as needed, on MWArrayComponent as follows:
Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Real);

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Imaginary);

2 Component Integration

2-22

Jagged Array Processing

A jagged array is an array whose elements are arrays. The elements of a jagged array
can be of different dimensions and sizes, as opposed to the elements of a non–jagged
array whose elements are of the same dimensions and size.

Web services, in particular, process data almost exclusively in jagged arrays.

MWNumericArrays can only process jagged arrays with a rectangular shape.

In the following code snippet, a rectangular jagged array of type int is initialized and
populated.

Initializing and Populating a Jagged Array

int[][] jagged = new int[5][];

for (int i = 0; i < 5; i++)

 jagged[i] = new int[10];

MWNumericArray jaggedMWArray = new MWNumericArray(jagged);

Console.WriteLine(jaggedMWArray);

 Block Console Display When Creating Figures

2-23

Block Console Display When Creating Figures

In this section...

“WaitForFiguresToDie Method” on page 2-23
“Using WaitForFiguresToDie to Block Execution” on page 2-23

WaitForFiguresToDie Method

The MATLAB Compiler SDK product adds a WaitForFiguresToDie method to
each .NET class that it creates. WaitForFiguresToDie takes no arguments. Your
application can call WaitForFiguresToDie any time during execution.

The purpose of WaitForFiguresToDie is to block execution of a calling program as
long as figures created in encapsulated MATLAB code are displayed. Typically you use
WaitForFiguresToDie when:

• There are one or more figures open that were created by a .NET assembly created by
the MATLAB Compiler SDK product.

• The method that displays the graphics requires user input before continuing.
• The method that calls the figures was called from main() in a console program.

When WaitForFiguresToDie is called, execution of the calling program is blocked if
any figures created by the calling object remain open.

Tip Consider using the console.readline method when possible as it accomplishes
much of this functionality in a standardized manner.

Caution Use care when calling the WaitForFiguresToDie method. Calling this method
from an interactive program can hang the application. This method should be called only
from console-based programs.

Using WaitForFiguresToDie to Block Execution

The following example illustrates using WaitForFiguresToDie from a .NET
application. The example uses a .NET assembly created by the MATLAB Compiler SDK
product; the object encapsulates MATLAB code that draws a simple plot.

2 Component Integration

2-24

1 Create a work folder for your source code. In this example, the folder is D:\work
\plotdemo.

2 In this folder, create the following MATLAB file:

drawplot.m

function drawplot()

 plot(1:10);

3 Use MATLAB Compiler SDK to create a .NET assembly with the following
properties:

Assembly name Figure

Class name Plotter

4 Create a .NET program in a file named runplot with the following code:

using Figure.Plotter;

public class Main

{

 public static void main(String[] args)

 {

 try

 {

 plotter p = new Plotter();

 try

 {

 p.showPlot();

 p.WaitForFiguresToDie();

 }

 catch (Exception e)

 {

 console.writeline(e);

 }

 }

 }

}

5 Compile the application.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

 Block Console Display When Creating Figures

2-25

Note: To see what happens without the call to WaitForFiguresToDie, comment
out the call, rebuild the application, and run it. In this case, the figure is drawn and
is immediately destroyed as the application exits.

2 Component Integration

2-26

Error Handling

As with managed code, any errors that occur during execution of an MATLAB function or
during data conversion are signaled by a standard .NET exception.

Like any other .NET application, an application that calls a method generated by the
MATLAB Compiler SDK product can handle errors by either:

• Catching and handling the exception locally
• Allowing the calling method to catch it

Here are examples for each way of handling errors.

In the GetPrimes example the method itself handles the exception.

public double[] GetPrimes(int n)

{

 MWArray primes= null;

 MyPrimesClass myPrimesClass= null;

 try

 {

 myPrimesClass= new MyPrimesClass();

 primes= myPrimesClass.myprimes((double)n);

 return (double[])(MWNumericArray)primes).

 ToVector(MWArrayComponent.Real);

 }

 catch (Exception ex)

 {

 Console.WriteLine("Exception: {0}", ex);

 return new double[0];

 }

}

In the next example, the method that calls myprimes does not catch the exception.
Instead, its calling method (that is, the method that calls the method that calls
myprimes) handles the exception.

public double[] GetPrimes(int n)

{

 MWArray primes= null;

 MyPrimesClass myPrimesClass= null;

 try

 {

 Error Handling

2-27

 myPrimesClass= new MyPrimesClass();

 primes= myPrimesClass.myprimes((double)n);

 return (double[])(MWNumericArray)primes).

 ToVector(MWArrayComponent.Real);

 }

 catch (Exception e)

 {

 throw;

 }

}

2 Component Integration

2-28

Freeing Resources Explicitly

Usually the Dispose method is called from a finally section in a try-finally block
as you can see in the following example:

try

 {

 /* Allocate a huge array */

 MWNumericArray array = new MWNumericArray(1000,1000);

 .

 . (use the array)

 .

 }

finally

 {

 /* Explicitly dispose of the managed array and its */

 /* native resources */

 if (null != array)

 {

 array.Dispose();

 }

 }

The statement array.Dispose() frees the memory allocated by both the managed
wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: Dispose and the static method
DisposeArray. The DisposeArray method is more general in that it disposes of either
a single MWArray or an array of arrays of type MWArray.

 Object Passing by Reference

2-29

Object Passing by Reference

In this section...

“MATLAB Array” on page 2-29
“Wrappering and Passing .NET Objects with MWObjectArray” on page 2-29

MATLAB Array

MWObjectArray, a special subclass of MWArray, lets you create a MATLAB array that
references .NET objects.

Note: For information about these data conversion classes, see the MATLAB MWArray
Class Library Reference, available in the matlabroot\help\dotnetbuilder
\MWArrayAPI folder, where matlabroot represents your MATLAB installation folder

Wrappering and Passing .NET Objects with MWObjectArray

You can create a MATLAB code wrapper around .NET objects using MWObjectArray.
Use this technique to pass objects by reference to MATLAB functions and return .NET
objects. The examples in this section present some common use cases.

Passing a .NET Object into a MATLAB Compiler SDK .NET Assembly

To pass an object into a MATLAB Compiler SDK assembly:

1 Write the MATLAB function that references a .NET type:
function addItem(hDictionary, key, value)

 if ~isa(hDictionary,'System.Collections.Generic.IDictionary')

 error('foo:IncorrectType',

 ... 'expecting a System.Collections.Generic.Dictionary');

 end

 hDictionary.Add(key, value);

 end

2 Create a .NET object to pass to the MATLAB function:
 Dictionary char2Ascii= new Dictionary();

 char2Ascii.Add("A", 65);

2 Component Integration

2-30

 char2Ascii.Add("B", 66);

3 Create an instance of MWObjectArray to wrap the .NET object:

 MWObjectArray MWchar2Ascii=

 new MWObjectArray(char2Ascii);

4 Pass the wrappered object to the MATLAB function:

myComp.addItem(MWchar2Ascii,'C', 67);

Returning a Custom .NET Object in a MATLAB Function Using a Deployed MATLAB Compiler
SDK .NET Assembly

You can also use MWObjectArray to clone an object inside a MATLAB Compiler
SDK .NET Assembly. Continuing with the example in “Passing a .NET Object into a
MATLAB Compiler SDK .NET Assembly” on page 2-29, perform the following steps:

1 Write the MATLAB function that references a .NET type:
 function result= add(hMyDouble, value)

 if ~isa(hMyDouble,'MyDoubleComp.MyDouble')

 error('foo:IncorrectType', 'expecting a MyDoubleComp.MyDouble');

 end

 hMyDoubleClone= hMyDouble.Clone();

 result= hMyDoubleClone.Add(value);

 end

2 Create the object:

MyDouble myDouble= new MyDouble(75);

3 Create an instance of MWObjectArray to wrap the .NET object:

MWObjectArray MWdouble= new MWObjectArray(myDouble);

 origRef = new MWObjectArray(hash);

4 Pass the wrappered object to the MATLAB function and retrieve the returned cloned
object:

MWObjectArray result=

 (MWObjectArray)myComp.add(MWdouble, 25);

5 Unwrap the .NET object and print the result:

MyDouble doubleClone= (MyDouble)result.Object;

 Console.WriteLine(myDouble.ToDouble());

 Console.WriteLine(doubleClone.ToDouble());

 Object Passing by Reference

2-31

Cloning an MWObjectArray

When calling the Clone method on MWObjectArray, the following rules apply for the
wrapped object.

• If the wrapped object is a ValueType, it is deep-copied.
• If an object is not a ValueType and implements ICloneable, the Clone method for

the object is called.
• The MemberwiseClone method is called on the wrapped object.

Calling Clone on MWObjectArray

MWObjectArray aDate = new MWObjectArray(new

 DateTime(1, 1, 2010));

MWObjectArray clonedDate = aDate.Clone();

Optimization Example Using MWObjectArray

For a full example of how to use MWObjectArray to create a reference to a .NET object
and pass it to a component, see the “Optimization (C#)” (C#) and the “Optimization
(Visual Basic)”.

MWObjectArray and Application Domains

Every ASP .NET web application deployed to IIS is launched in a separate AppDomain.

The MATLAB .NET interface must support the .NET type wrapped by MWObjectArray.
If the MWObjectArray is created in the default AppDomain, the wrapped type has no
other restrictions.

If the MWObjectArray is not created in the default AppDomain, the wrapped .NET
type must be serializable. This limitation is imposed by the fact that the object needs to
be marshaled from the non-default AppDomain to the default AppDomain in order for
MATLAB to access it.

2 Component Integration

2-32

Component Access On Another Computer

To implement your .NET assembly on a computer other than the one on which it was
built:

1 If the component is not already installed on the machine where you want to develop
your application, run the self-extracting executable that you created in “Create
a .NET Assembly”.

This step is not necessary if you are developing your application on the same
machine where you created the .NET assembly.

2 Reference the .NET assembly in your Microsoft Visual Studio project or from the
command line of a CLS-compliant compiler.

You must also add a reference to the MWArray component in matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version. See “Supported
Microsoft .NET Framework Versions” on page 1-3 for a list of supported framework
versions.

3 Instantiate the generated .NET classes and call the class methods as you would with
any .NET class. To marshal data between the native .NET types and the MATLAB
array type, you need to use either the MWArray data conversion classes or the
MWArray native API.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

To avoid using data conversion classes, see “Implement a Type-Safe Interface” on
page 7-10.

 For More Information

2-33

For More Information

If you want to... See...

Learn how to build a component “Create a .NET Assembly”
Perform basic integration tasks using C#
code

“Integrate a .NET Assembly Into a C#
Application” on page 1-4

• Basic MATLAB Programmer tasks
• How the deployment products process

your MATLAB functions
• How the deployment products work

together

“Write Deployable MATLAB Code”

Work with cell arrays and data structures
using native .NET types

“Using Native .NET Structure and Cell
Arrays” on page 10-6

3

C# Integration Examples

• “Simple Plot (C#)” on page 3-2
• “Passing Variable Arguments (C#)” on page 3-6
• “Spectral Analysis (C#)” on page 3-10
• “Matrix Math (C#)” on page 3-15
• “Phone Book (C#)” on page 3-21
• “Optimization (C#)” on page 3-26

3 C# Integration Examples

3-2

Simple Plot (C#)

In this section...

“Purpose” on page 3-2
“Procedure” on page 3-2

Purpose

The drawgraph function displays a plot of input parameters x and y. The purpose of the
example is to show you how to:

• Use the MATLAB Compiler SDK product to convert a MATLAB function
(drawgraph) to a method of a .NET class (Plotter) and wrap the class in a .NET
assembly (PlotComp).

• Access the component in a C# application (PlotApp.cs) by instantiating the
Plotter class and using the MWArray class library to handle data conversion.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Build and run the PlotCSApp application, using the Visual Studio .NET development
environment.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your work
folder:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\PlotExample

b At the MATLAB command prompt, change folder to the new PlotExample
\PlotComp subfolder in your work folder.

2 Write the drawgraph function as you would any MATLAB function.

This code is already in your work folder in PlotExample\PlotComp\drawgraph.m.
3 From the MATLAB apps gallery, open the Library Compiler app.

 Simple Plot (C#)

3-3

4 Build the .NET component. See the instructions in “Create a .NET Assembly” for
more details. Use the following information:

Project Name PlotComp

Class Name Plotter

File to compile drawgraph.m

5 Write source code for a C# application that accesses the component.

The sample application for this example is in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\PlotExample

\PlotCSApp\PlotApp.cs.

The program listing is shown here.
using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using PlotComp;

namespace MathWorks.Examples.PlotApp

 {

 /// <summary>

 /// This application demonstrates plotting x-y data by graphing a simple

 /// parabola into a MATLAB figure window.

 /// </summary>

 class PlotCSApp

 {

 #region MAIN

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 try

 {

 const int numPoints= 10; // Number of points to plot

 // Allocate native array for plot values

 double [,] plotValues= new double[2, numPoints];

 // Plot 5x vs x^2

 for (int x= 1; x <= numPoints; x++)

 {

 plotValues[0, x-1]= x*5;

 plotValues[1, x-1]= x*x;

 }

 // Create a new plotter object

 Plotter plotter= new Plotter();

3 C# Integration Examples

3-4

 // Plot the two sets of values - Note the ability to cast

 the native array to a MATLAB numeric array

 plotter.drawgraph((MWNumericArray)plotValues);

 Console.ReadLine(); // Wait for user to exit application

 }

 catch(Exception exception)

 {

 Console.WriteLine("Error: {0}", exception);

 }

 }

 #endregion

 }

 }

The program does the following:

• Creates two arrays of double values
• Creates a Plotter object.
• Calls the drawgraph method to plot the equation using the MATLAB plot

function.
• Uses MWNumericArray to represent the data needed by the drawgraph method

to plot the equation.
• Uses a try-catch block to catch and handle any exceptions.

The statement

 Plotter plotter= new Plotter();

creates an instance of the Plotter class, and the statement

plotter.drawgraph((MWNumericArray)plotValues);

explicitly casts the native plotValues to MWNumericArray and then calls the
method drawgraph.

6 Build the PlotCSApp application using Visual Studio .NET.

a The PlotCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
PlotCSApp.csproj in Windows® Explorer. You can also open it from the
desktop by right-clicking PlotCSApp.csproj > Open Outside MATLAB.

 Simple Plot (C#)

3-5

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version\mwarray.dll.

c Add or, if necessary, fix the location of a reference to the PlotComp component
which you built in a previous step. (The component, PlotComp.dll, is in the
\PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your work
area.)

7 Build and run the application in Visual Studio .NET.

3 C# Integration Examples

3-6

Passing Variable Arguments (C#)

Note: This example is similar to “Simple Plot (C#)” on page 3-2, except that the MATLAB
function to be encapsulated takes a variable number of arguments instead of just one.

The purpose of the example is to show you the following:

• How to use the MATLAB Compiler SDK product to convert a MATLAB function,
drawgraph, which takes a variable number of arguments, to a method of a .NET class
(Plotter) and wrap the class in a .NET assembly (VarArgComp). The drawgraph
function (which can be called as a method of the Plotter class) displays a plot of the
input parameters.

• How to access the component in a C# application (VarArgApp.cs) by instantiating
the Plotter class and using MWArray to represent data.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• How to build and run the VarArgDemoApp application, using the Visual Studio .NET
development environment.

Procedure 3.2. Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your work
folder:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\VarArgExample

b At the MATLAB command prompt, cd to the new VarArgExample subfolder in
your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

The code for the functions in this example is as follows:

drawgraph.m

function [xyCoords] = DrawGraph(colorSpec, varargin)

 Passing Variable Arguments (C#)

3-7

...

 numVarArgIn= length(varargin);

 xyCoords= zeros(numVarArgIn, 2);

 for idx = 1:numVarArgIn

 xCoord = varargin{idx}(1);

 yCoord = varargin{idx}(2);

 x(idx) = xCoord;

 y(idx) = yCoord;

 xyCoords(idx,1) = xCoord;

 xyCoords(idx,2) = yCoord;

 end

 xmin = min(0, min(x));

 ymin = min(0, min(y));

 axis([xmin fix(max(x))+3 ymin fix(max(y))+3])

 plot(x, y, 'color', colorSpec);

extractcoords.m

function [varargout] = ExtractCoords(coords)

 for idx = 1:nargout

 varargout{idx}= coords(idx,:);

 end

This code is already in your work folder in \VarArgExample\VarArgComp\.
3 From the MATLAB apps gallery, open the Library Compiler app.
4 Build the .NET component. See the instructions in “Create a .NET Assembly” for

more details. Use the following information:

Project Name VarArgComp

Class Name Plotter

File to compile extractcoords.m drawgraph.m
5 Write source code for an application that accesses the component.

The sample application for this example is in VarArgExample\VarArgCSApp
\VarArgApp.cs.

The program listing is shown here.

VarArgApp.cs

using System;

3 C# Integration Examples

3-8

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using VarArgComp;

namespace MathWorks.Examples.VarArgApp

 {

 /// <summary>

 /// This application demonstrates how to call components

 /// having methods with varargin/vargout arguments.

 /// </summary>

 class VarArgApp

 {

 #region MAIN

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 // Initialize the input data

 MWNumericArray colorSpec= new double[]

 {0.9, 0.0, 0.0};

 MWNumericArray data=

 new MWNumericArray(new int[,]{{1,2},{2,4},

 {3,6},{4,8},{5,10}});

 MWArray[] coords= null;

 try

 {

 // Create a new plotter object

 Plotter plotter= new Plotter();

 //Extract a variable number of two element x and y coordinate

 // vectors from the data array

 coords= plotter.extractcoords(5, data);

 // Draw a graph using the specified color to connect the

 // variable number of input coordinates.

 // Return a two column data array containing the input coordinates.

 data= (MWNumericArray)plotter.drawgraph(colorSpec,

 coords[0], coords[1], coords[2],coords[3], coords[4]);

 Console.WriteLine("result=\n{0}", data);

 Console.ReadLine(); // Wait for user to exit application

 // Note: You can also pass in the coordinate array directly.

 data= (MWNumericArray)plotter.drawgraph(colorSpec, coords);

 Console.WriteLine("result=\n{0}", data);

 Console.ReadLine(); // Wait for user to exit application

 }

 catch(Exception exception)

 {

 Console.WriteLine("Error: {0}", exception);

 }

 }

 Passing Variable Arguments (C#)

3-9

 #endregion

 }

 }

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the MWArray class
library

• Creates a Plotter object
• Calls the extracoords and drawgraph methods
• Uses MWNumericArray to represent the data needed by the methods
• Uses a try-catch block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph method:
data= (MWNumericArray)plotter.drawgraph(colorSpec,

 coords[0], coords[1], coords[2],coords[3], coords[4]);

...

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec, coords);

6 Build the VarArgApp application using Visual Studio .NET.

a The VarArgCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgCSApp.csproj in Windows Explorer. You can also open it from the
desktop by right-clicking VarArgCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version\mwarray.dll.

c Add or, if necessary, fix the location of a reference to the VarArgComp
component which you built in a previous step. (The component,
VarArgComp.dll, is in the \VarArgExample\VarArgComp\x86\v2.0\debug
\distrib subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

3 C# Integration Examples

3-10

Spectral Analysis (C#)
In this section...

“Purpose” on page 3-10
“Procedure” on page 3-11

Purpose

The purpose of the example is to show you the following:

• How to use the MATLAB Compiler SDK product to create an assembly
(SpectraComp) containing more than one class

• How to access the component in a C# application (SpectraApp.cs), including use of
the MWArray class hierarchy to represent data

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• How to build and run the application, using the Visual Studio .NET development
environment

The component SpectraComp analyzes a signal and graphs the result. The class,
SignalAnalyzer, performs a fast Fourier transform (FFT) on an input data array.
A method of this class, computefft, returns the results of that FFT as two output
arrays—an array of frequency points and the power spectral density. The second class,
Plotter, graphs the returned data using the plotfft method. These two methods,
computefft and plotfft, encapsulate MATLAB functions.

The computefft method computes the FFT and power spectral density of the input data
and computes a vector of frequency points based on the length of the data entered and
the sampling interval. The plotfft method plots the FFT data and the power spectral
density in a MATLAB figure window. The MATLAB code for these two methods resides
in two MATLAB files, computefft.m and plotfft.m, which can be found in:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\SpectraExample\SpectraComp

computefft.m

function [fftData, freq, powerSpect] =

 Spectral Analysis (C#)

3-11

 ComputeFFT(data, interval)

if (isempty(data))

 fftdata = [];

 freq = [];

 powerspect = [];

 return;

end

if (interval <= 0)

 error('Sampling interval must be greater than zero');

 return;

end

fftData = fft(data);

freq = (0:length(fftData)-1)/(length(fftData)*interval);

powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)

len = length(fftData);

 if (len <= 0)

 return;

 end

 plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))

 xlabel('Frequency (Hz)'), grid on

 title('Power spectral density')

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your work
folder:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\SpectraExample

b At the MATLAB command prompt, cd to the new SpectraExample subfolder in
your work folder.

2 Write the MATLAB code that you want to access.

This example uses computefft.m and plotfft.m, which are already in your work
folder in SpectraExample\SpectraComp.

3 From the MATLAB apps gallery, open the Library Compiler app.
4 Build the .NET component. See the instructions in “Create a .NET Assembly” for

more details. Use the following information:

3 C# Integration Examples

3-12

Project Name SpectraComp

Class Names Plotter SignalAnalyzer
Files to compile computefft.m plotfft.m

5 Write source code for an application that accesses the component.

The sample application for this example is in SpectraExample\SpectraCSApp
\SpectraApp.cs.

The program listing is shown here.

SpectraApp.cs

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using SpectraComp;

namespace MathWorks.Examples.SpectraApp

{

 /// <summary>

 /// This application computes and plots the power spectral density of an input signal.

 /// </summary>

 class SpectraCSApp

 {

 #region MAIN

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 try

 {

 const double interval= 0.01; // The sampling interval

 const int numSamples= 1001; // The number of samples

 // Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

 // random signal. Duration= 10; Sampling interval= 0.01

 MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,

 MWNumericType.Double, numSamples);

 Random random= new Random();

 // Initialize data

 for (int idx= 1; idx <= numSamples; idx++)

 {

 double t= (idx-1)* interval;

 data[idx]= Math.Sin(2.0*Math.PI*15.0*t) + Math.Sin(2.0*Math.PI*40.0*t) +

 random.NextDouble();

 }

 Spectral Analysis (C#)

3-13

 // Create a new signal analyzer object

 SignalAnalyzer signalAnalyzer= new SignalAnalyzer();

 // Compute the fft and power spectral density for the data array

 MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

 // Print the first twenty elements of each result array

 int numElements= 20;

 MWNumericArray resultArray= new MWNumericArray(MWArrayComplexity.Complex,

 MWNumericType.Double, numElements);

 for (int idx= 1; idx <= numElements; idx++)

 {

 resultArray[idx]= ((MWNumericArray)argsOut[0])[idx];

 }

 Console.WriteLine("FFT:\n{0}\n", resultArray);

 for (int idx= 1; idx <= numElements; idx++)

 {

 resultArray[idx]= ((MWNumericArray)argsOut[1])[idx];

 }

 Console.WriteLine("Frequency:\n{0}\n", resultArray);

 for (int idx= 1; idx <= numElements; idx++)

 {

 resultArray[idx]= ((MWNumericArray)argsOut[2])[idx];

 }

 Console.WriteLine("Power Spectral Density:\n{0}", resultArray);

 // Create a new plotter object

 Plotter plotter= new Plotter();

 // Plot the fft and power spectral density for the data array

 plotter.plotfft(argsOut[0], argsOut[1], argsOut[2]);

 Console.ReadLine(); // Wait for user to exit application

 }

 catch(Exception exception)

 {

 Console.WriteLine("Error: {0}", exception);

 }

 }

 #endregion

 }

}

The program does the following:

• Constructs an input array with values representing a random signal with two
sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data

3 C# Integration Examples

3-14

• Instantiates a SignalAnalyzer object
• Calls the computefft method, which computes the FFT, frequency, and the

spectral density
• Instantiates a Plotter object
• Calls the plotfft method, which plots the data
• Uses a try/catch block to handle exceptions

The following statement

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,

MWNumericType.Double, numSamples);

shows how to use the MWArray class library to construct a MWNumericArray that is
used as method input to the computefft function.

The following statement

SignalAnalyzer signalAnalyzer = new SignalAnalyzer();

creates an instance of the class SignalAnalyzer, and the following statement

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

calls the method computefft.
6 Build the SpectraApp application using Visual Studio .NET.

a The SpectraCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
SpectraCSApp.csproj in Windows Explorer. You can also open it from the
desktop by right-clicking SpectraCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll. See “Supported Microsoft .NET Framework Versions” on page
1-3 for a list of supported framework versions.

c If necessary, add (or fix the location of) a reference to the SpectraComp
component which you built in a previous step. (The component,
SpectraComp.dll, is in the \SpectraExample\SpectraComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

 Matrix Math (C#)

3-15

Matrix Math (C#)

In this section...

“Purpose” on page 3-15
“Procedure” on page 3-16
“MATLAB Functions to Be Encapsulated” on page 3-19
“Understanding the MatrixMath Program” on page 3-20

Purpose

The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class
• How to access the component in a C# application (MatrixMathApp.cs) by

instantiating Factor and using the MWArray class library to handle data conversion

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• How to build and run the MatrixMathApp application, using the Visual Studio .NET
development environment

This example builds a .NET component to perform matrix math. The example creates
a program that performs Cholesky, LU, and QR factorizations on a simple tridiagonal
matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0

 -1 2 -1 0 0

 0 -1 2 -1 0

 0 0 -1 2 -1

 0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program constructs the
matrix and performs the three factorizations. The original matrix and the results are
printed to standard output. You may optionally perform the calculations using a sparse
matrix by specifying the string "sparse" as the second parameter on the command line.

3 C# Integration Examples

3-16

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your work
folder:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in your
work folder in MatrixMathExample\MatrixMathComp\.

3 From the MATLAB apps gallery, open the Library Compiler app.
4 Build the .NET component. See the instructions in “Create a .NET Assembly” for

more details. Use the following information:

Project Name MatrixMathComp

Class Name Factor

Files to compile cholesky ludecomp qrdecomp
5 Write source code for an application that accesses the component.

The sample application for this example is in MatrixMathExample
\MatrixMathCSApp\MatrixMathApp.cs.

The program listing is shown here.

MatrixMathApp.cs

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using MatrixMathComp;

namespace MathWorks.Examples.MatrixMath

{

 /// <summary>

 /// This application computes cholesky, LU, and QR factorizations of a finite

 /// difference matrix of order N.

 /// The order is passed into the application on the command line.

 /// </summary>

 /// <remarks>

 /// Command Line Arguments:

 /// <newpara></newpara>

 Matrix Math (C#)

3-17

 /// args[0] - Matrix order(N)

 /// <newpara></newpara>

 /// args[1] - (optional) sparse; Use a sparse matrix

 /// </remarks>

 class MatrixMathApp

 {

 #region MAIN

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 bool makeSparse= true;

 int matrixOrder= 4;

 MWNumericArray matrix= null; // The matrix to factor

 MWArray argOut= null; // Stores single factorization result

 MWArray[] argsOut= null; // Stores multiple factorization results

 try

 {

 // If no argument specified, use defaults

 if (0 != args.Length)

 {

 // Convert matrix order

 matrixOrder= Int32.Parse(args[0]);

 if (0 >= matrixOrder)

 {

 throw new ArgumentOutOfRangeException("matrixOrder", matrixOrder,

 "Must enter a positive integer for the matrix order(N)");

 }

 makeSparse= ((1 < args.Length) && (args[1].Equals("sparse")));

 }

 // Create the test matrix. If the second argument is "sparse",

 // create a sparse matrix.

 matrix= (makeSparse)

 ? MWNumericArray.MakeSparse(matrixOrder, matrixOrder,

 MWArrayComplexity.Real, (matrixOrder+(2*(matrixOrder-1))))

 : new MWNumericArray(MWArrayComplexity.Real,

 MWNumericType.Double, matrixOrder, matrixOrder);

 // Initialize the test matrix

 for (int rowIdx= 1; rowIdx <= matrixOrder; rowIdx++)

 for (int colIdx= 1; colIdx <= matrixOrder; colIdx++)

 if (rowIdx == colIdx)

 matrix[rowIdx, colIdx]= 2.0;

 else if ((colIdx == rowIdx+1) || (colIdx == rowIdx-1))

 matrix[rowIdx, colIdx]= -1.0;

 // Create a new factor object

 Factor factor= new Factor();

 // Print the test matrix

 Console.WriteLine("Test Matrix:\n{0}\n", matrix);

 // Compute and print the cholesky factorization using the

3 C# Integration Examples

3-18

 // single output syntax

 argOut= factor.cholesky((MWArray)matrix);

 Console.WriteLine("Cholesky

 Factorization:\n{0}\n", argOut);

 // Compute and print the LU factorization using the multiple output syntax

 argsOut= factor.ludecomp(2, matrix);

 Console.WriteLine("LU Factorization:\nL

 Matrix:\n{0}\nU Matrix:\n{1}\n", argsOut[0],

 argsOut[1]);

 MWNumericArray.DisposeArray(argsOut);

 // Compute and print the QR factorization

 argsOut= factor.qrdecomp(2, matrix);

 Console.WriteLine("QR Factorization:\nQ Matrix:\n{0}\nR Matrix:\n{1}\n",

 argsOut[0], argsOut[1]);

 Console.ReadLine();

 }

 catch(Exception exception)

 {

 Console.WriteLine("Error: {0}", exception);

 }

 finally

 {

 // Free native resources

 if (null != (object)matrix) matrix.Dispose();

 if (null != (object)argOut) argOut.Dispose();

 MWNumericArray.DisposeArray(argsOut);

 }

 }

 #endregion

 }

 }

The statement

 Factor factor= new Factor();

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB functions:

argOut= factor.cholesky((MWArray)matrix);

...

argsOut= factor.ludecomp(2, matrix);

...

argsOut= factor.qrdecomp(2, matrix);

...

 Matrix Math (C#)

3-19

Note: See “Understanding the MatrixMath Program” on page 3-20 for more
details about the structure of this program.

6 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathCSApp folder contains a Visual Studio .NET project file
for this example. Open the project in Visual Studio .NET by double-clicking
MatrixMathCSApp.csproj in Windows Explorer. You can also open it from
the desktop by right-clicking MatrixMathCSApp.csproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll. See “Supported Microsoft .NET Framework Versions” on page
1-3 for a list of supported framework versions.

c If necessary, add (or fix the location of) a reference to the MatrixMathComp
component which you built in a previous step. (The component,
MatrixMathComp.dll, is in the \MatrixMathExample\MatrixMathComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

MATLAB Functions to Be Encapsulated

The following code defines the MATLAB functions used in the example.

cholesky.m

function [L] = Cholesky(A)

 L = chol(A);

ludecomp.m

function [L,U] = LUDecomp(A)

 [L,U] = lu(A);

qrdecomp.m

function [Q,R] = QRDecomp(A)

 [Q,R] = qr(A);

3 C# Integration Examples

3-20

Understanding the MatrixMath Program

The MatrixMath program takes one or two arguments from the command line. The first
argument is converted to the integer order of the test matrix. If the string sparse is
passed as the second argument, a sparse matrix is created to contain the test array. The
Cholesky, LU, and QR factorizations are then computed and the results are displayed.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls the
cholesky, ludecomp, and qrdecomp methods. This part is executed inside of a try
block. This is done so that if an exception occurs during execution, the corresponding
catch block will be executed.

• The second part is the catch block. The code prints a message to standard output to
let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources before
exiting.

Note: This optional as the garbage collector will automatically clean-up resources for
you.

 Phone Book (C#)

3-21

Phone Book (C#)

In this section...

“Purpose” on page 3-21
“Procedure” on page 3-21

Purpose

The makephone function takes a structure array as an input, modifies it, and supplies
the modified array as an output.

Note: For information about these data conversion classes, see the MATLAB MWArray
Class Library Reference, available in the matlabroot\help\dotnetbuilder
\MWArrayAPI folder, where matlabroot represents your MATLAB installation folder

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample subfolder
in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:
function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% Copyright 2006-2012 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

 numberStr = num2str(book(i).phone);

 book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in PhoneBookExample\PhoneBookComp
\makephone.m.

3 C# Integration Examples

3-22

3 From the MATLAB apps gallery, open the Library Compiler app.
4 Build the .NET component. See the instructions in “Create a .NET Assembly” for

more details. Use the following information:

Project Name PhoneBookComp

Class Name Phonebook

File to compile makephone

5 Write source code for an application that accesses the component.

The sample application for this example is in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\NET\

PhoneBookExample\PhoneBookCSApp\PhoneBookApp.cs.

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure array.

The program listing is shown here.

PhoneBookApp.cs

/* Necessary package imports */

using System;

using System.Collections.Generic;

using System.Text;

using MathWorks.MATLAB.NET.Arrays;

using PhoneBookComp;

namespace MathWorks.Examples.PhoneBookApp

{

 //

 // This class demonstrates the use of the MWStructArray class

 //

 class PhoneBookApp

 {

 static void Main(string[] args)

 {

 PhoneBook thePhonebook = null; /* Stores deployment class instance */

 MWStructArray friends= null; /* Sample input data */

 MWArray[] result= null; /* Stores the result */

 MWStructArray book= null; /* Ouptut data extracted from result */

 /* Create the new deployment object */

 thePhonebook= new PhoneBook();

 /* Create an MWStructArray with two fields */

 String[] myFieldNames= { "name", "phone" };

 friends= new MWStructArray(2, 2, myFieldNames);

 /* Populate struct with some sample data --- friends and phone */

 /* number extensions */

 friends["name", 1]= new MWCharArray("Jordan Robert");

 Phone Book (C#)

3-23

 friends["phone", 1]= 3386;

 friends["name", 2]= new MWCharArray("Mary Smith");

 friends["phone", 2]= 3912;

 friends["name", 3]= new MWCharArray("Stacy Flora");

 friends["phone", 3]= 3238;

 friends["name", 4]= new MWCharArray("Harry Alpert");

 friends["phone", 4]= 3077;

 /* Show some of the sample data */

 Console.WriteLine("Friends: ");

 Console.WriteLine(friends.ToString());

 /* Pass it to an MATLAB function that determines external phone number */

 result= thePhonebook.makephone(1, friends);

 book= (MWStructArray)result[0];

 Console.WriteLine("Result: ");

 Console.WriteLine(book.ToString());

 /* Extract some data from the returned structure */

 Console.WriteLine("Result record 2:");

 Console.WriteLine(book["name", 2]);

 Console.WriteLine(book["phone", 2]);

 Console.WriteLine(book["external", 2]);

 /* Print the entire result structure using the helper function below */

 Console.WriteLine("");

 Console.WriteLine("Entire structure:");

 DispStruct(book);

 Console.ReadLine();

 }

 public static void DispStruct(MWStructArray arr)

 {

 Console.WriteLine("Number of Elements: " + arr.NumberOfElements);

 int[] dims= arr.Dimensions;

 Console.Write("Dimensions: " + dims[0]);

 for (int idx= 1; idx < dims.Length; idx++)

 {

 Console.WriteLine("-by-" + dims[idx]);

 }

 Console.WriteLine("\nNumber of Fields: " + arr.NumberOfFields);

 Console.WriteLine("Standard MATLAB view:");

 Console.WriteLine(arr.ToString());

 Console.WriteLine("Walking structure:");

 string[] fieldNames= arr.FieldNames;

 for (int element= 1; element <= arr.NumberOfElements; element++)

 {

 Console.WriteLine("Element " + element);

 for (int field= 0; field < arr.NumberOfFields; field++)

 {

3 C# Integration Examples

3-24

 MWArray fieldVal= arr[arr.FieldNames[field], element];

 /* Recursively print substructures, */

 /* give string display of other classes */

 if (fieldVal.GetType() == typeof(MWStructArray))

 {

 Console.WriteLine(" " + fieldNames[field] + ":

 nested structure:");

 Console.WriteLine("+++ Begin of \"" + fieldNames[field] + "\"

 nested structure");

 DispStruct((MWStructArray)fieldVal);

 Console.WriteLine("+++ End of \"" + fieldNames[field] +

 "\" nested structure");

 }

 else

 {

 Console.Write(" " + fieldNames[field] + ": ");

 Console.WriteLine(fieldVal.ToString());

 }

 }

 }

 }

 }

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the Phonebook class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by adding
an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookCSApp application using Visual Studio .NET.

a The PhoneBookCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
PhoneBookCSApp.csproj in Windows Explorer. You can also open it from
the desktop by right-clicking PhoneBookCSApp.csproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the PhoneBookComp
component which you built in a previous step. (The component,
PhoneBookComp.dll, is in the \PhoneBookExample\PhoneBookComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

 Phone Book (C#)

3-25

7 Build and run the application in Visual Studio .NET.

The PhoneBookApp program should display the output:

Friends:

2x2 struct array with fields:

 name

 phone

Result:

2x2 struct array with fields:

 name

 phone

 external

Result record 2:

Mary Smith

3912

(508) 555-3912

Entire structure:

Number of Elements: 4

Dimensions: 2-by-2

Number of Fields: 3

Standard MATLAB view:

2x2 struct array with fields:

 name

 phone

 external

Walking structure:

Element 1

 name: Jordan Robert

 phone: 3386

 external: (508) 555-3386

Element 2

 name: Mary Smith

 phone: 3912

 external: (508) 555-3912

Element 3

 name: Stacy Flora

 phone: 3238

 external: (508) 555-3238

Element 4

 name: Harry Alpert

 phone: 3077

 external: (508) 555-3077

3 C# Integration Examples

3-26

Optimization (C#)

In this section...

“Purpose” on page 3-26
“OptimizeComp Component” on page 3-26
“Procedure” on page 3-27

Purpose

This example shows how to:

• Use the MATLAB Compiler SDK product to create an assembly (OptimizeComp).
This assembly applies MATLAB optimization routines to objective functions
implemented as .NET objects.

• Access the component in a .NET application (OptimizeApp.cs). Then use the
MWObjectArray class to create a reference to a .NET object (BananaFunction.cs),
and pass that object to the component.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Build and run the application.

OptimizeComp Component

The component (OptimizeComp) finds a local minimum of an objective function and
returns the minimal location and value. The component uses the MATLAB optimization
function fminsearch. This example optimizes the Rosenbrock banana function used in
the fminsearch documentation.

The class OptimizeComp.OptimizeClass performs an unconstrained nonlinear
optimization on an objective function implemented as a .NET object. A method of this
class, doOptim, accepts an initial value (NET object) that implements the objective
function, and returns the location and value of a local minimum.

 Optimization (C#)

3-27

The second method, displayObj, is a debugging tool that lists the characteristics of
a .NET object. These two methods, doOptim and displayObj, encapsulate MATLAB
functions. The MATLAB code for these two methods resides in doOptim.m and
displayObj.m. You can find this code in matlabroot\toolbox\dotnetbuilder
\VSVersion\NET\Examples\OptimizeExample\OptimizeComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

1 Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\dotnetbuilder\VSVersion\NET\Examples

\OptimizeExample

2 At the MATLAB command prompt, cd to the new OptimizeExample subfolder
in your work folder.

2 If you have not already done so, set the environment variables that are required on a
development machine.

3 Write the MATLAB code that you want to access. This example uses doOptim.m
and displayObj.m, which already reside in your work folder. The path
is matlabroot\toolbox\dotnetbuilder\VSVersion\NET\Examples
\OptimizeExample\OptimizeComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)

mWrapper = @(x) h.evaluateFunction(x);

directEval = h.evaluateFunction(x0)

wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)

h

className = class(h)

whos('h')

methods(h)

4 From the MATLAB apps gallery, open the Library Compiler app.

3 C# Integration Examples

3-28

5 As you compile the .NET application using the Library Compiler, use the following
information:

Project Name OptimizeComp

Class Name OptimizeComp.OptimizeClass

File to compile doOptim.m

displayObj.m

6 Write source code for a class (BananaFunction) that implements an object function
to optimize. The sample application for this example is in matlabroot\toolbox
\dotnetbuilder\VSVersion\NET\Examples\OptimizeExample

\OptimizeCSApp. The program listing for BananaFunction.cs displays the
following code:

using System;

namespace MathWorks.Examples.Optimize

{

 public class BananaFunction

 {

 public BananaFunction() {}

 public double evaluateFunction(double[] x)

 {

 double term1= 100*Math.Pow((x[1]-Math.Pow(x[0],2.0)),2.0);

 double term2= Math.Pow((1-x[0]),2.0);

 return term1+term2;

 }

 }

}

The class implements the Rosenbrock banana function described in the fminsearch
documentation.

7 Customize the application using Visual Studio .NET using the OptimizeCSApp
folder, which contains a Visual Studio .NET project file for this example.

a . Open the project in Visual Studio .NET by double-clicking
OptimizeCSApp.csproj in Windows Explorer. You can also open it from the
desktop by right-clicking OptimizeCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the OptimizeComp
component which you built in a previous step. (The component,
OptimizeComp.dll, is in the \OptimizeExample\OptimizeComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

 Optimization (C#)

3-29

When run successfully, the program displays the following output:

Using initial points= -1.2000 1

** Properties of .NET Object **

h =

 MathWorks.Examples.Optimize.BananaFunction handle

 with no properties.

 Package: MathWorks.Examples.Optimize

className =

MathWorks.Examples.Optimize.BananaFunction

 Name Size Bytes Class Attributes

 h 1x1 60 MathWorks.Examples.Optimize.BananaFunction

Methods for class MathWorks.Examples.Optimize.BananaFunction:

BananaFunction addlistener findprop lt

Equals delete ge ne

GetHashCode eq gt notify

GetType evaluateFunction isvalid

ToString findobj le

**************** Finished displayObj ****************

** Performing unconstrained nonlinear optimization **

3 C# Integration Examples

3-30

directEval =

 24.2000

wrapperEval =

 24.2000

x =

 1.0000 1.0000

fval =

 8.1777e-010

***************** Finished doOptim ******************

Location of minimum: 1.0000 1.0000

Function value at minimum: 8.1777e-010

4

Microsoft Visual Basic Integration
Examples

• “Magic Square (Visual Basic)” on page 4-2
• “Create Plot Example (Visual Basic)” on page 4-5
• “Variable Arguments (Visual Basic)” on page 4-7
• “Spectral Analysis (Visual Basic)” on page 4-10
• “Matrix Math (Visual Basic)” on page 4-14
• “Phone Book (Visual Basic)” on page 4-18
• “Optimization (Visual Basic)” on page 4-23

Note: The examples for the MATLAB Compiler SDK product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion, where matlabroot
is the folder where the MATLAB product is installed and VSVersion specifies the
version of Microsoft Visual Studio .NET you are using. If you have Microsoft Visual
Studio .NET installed, you can load projects for all the examples by opening the following
solution:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\DotNetExamples.sln

4 Microsoft Visual Basic Integration Examples

4-2

Magic Square (Visual Basic)

To create the component for this example, see the first several steps in “Create a .NET
Assembly”. After you build the MagicSquareComp component, you can build an
application that accesses the component as follows.

1 For this example, the application is MagicSquareApp.vb.

You can find MagicSquareApp.vb in:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MagicSquareExample\MagicSquareVBApp

The program listing is as follows.

MagicSquareApp.vb

Imports System

Imports System.Reflection

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MagicSquareComp

Namespace MathWorks.Examples.MagicSquare

 ' <summary>

 ' The MagicSquareApp class computes a magic square of the user specified size.

 ' </summary>

 ' <remarks>

 ' args[0] - a positive integer representing the array size.

 ' </remarks>

 Class MagicSquareApp

#Region " MAIN "

 ' <summary>

 ' The main entry point for the application.

 ' </summary>

 Shared Sub Main(ByVal args() As String)

 Dim arraySize As MWNumericArray = Nothing

 Dim magicSquare As MWNumericArray = Nothing

 Try

 ' Get user specified command line arguments or set default

 If (0 <> args.Length) Then

 arraySize = New MWNumericArray(Int32.Parse(args(0)), False)

 Else

 arraySize = New MWNumericArray(4, False)

 End If

 ' Create the magic square object

 Dim magic As MagicSquareClass = New MagicSquareClass

 ' Compute the magic square and print the result

 Magic Square (Visual Basic)

4-3

 magicSquare = magic.makesquare(arraySize)

 Console.WriteLine("Magic square of order {0}{1}{2}{3}", arraySize,

 Chr(10), Chr(10), magicSquare)

 ' Convert the magic square array to a two dimensional native double array

 Dim nativeArray(,) As Double =

 CType(magicSquare.ToArray(MWArrayComponent.Real), Double(,))

 Console.WriteLine("{0}Magic square as native array:{1}", Chr(10), Chr(10))

 ' Display the array elements:

 Dim index As Integer = arraySize.ToScalarInteger()

 For i As Integer = 0 To index - 1

 For j As Integer = 0 To index - 1

 Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray(i, j))

 Next j

 Next i

 Console.ReadLine() 'Wait for user to exit application

 Catch exception As Exception

 Console.WriteLine("Error: {0}", exception)

 End Try

 End Sub

#End Region

 End Class

End Namespace

The application you build from this source file does the following:

• Lets you pass a dimension for the magic square from the command line.
• Converts the dimension argument to a MATLAB integer scalar value.
• Declares variables of type MWNumericArray to handle data required by the

encapsulated makesquare function.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Creates an instance of the MagicSquare class named magic.
• Calls the makesquare method, which belongs to the magic object. The

makesquare method generates the magic square using the MATLAB magic
function.

4 Microsoft Visual Basic Integration Examples

4-4

• Displays the array elements on the command line.
2 Build the application using Visual Studio .NET.

a The MagicSquareVBApp folder contains a Visual Studio .NET project file for
each example. Open the project in Visual Studio .NET for this example by
double-clicking MagicSquareVBApp.vbproj in Windows Explorer.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add a reference to the MagicSquareComp component, which is in
the distrib subfolder.

d Build and run the application in Visual Studio.NET.

 Create Plot Example (Visual Basic)

4-5

Create Plot Example (Visual Basic)

To create the component for this example, see “Simple Plot (C#)” on page 3-2. Then create
a Visual Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET

\PlotExample\PlotVBApp\PlotApp.vb.

The program listing is shown here.

PlotApp.vb

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports PlotComp

Namespace MathWorks.Examples.PlotApp

 ' <summary>

 ' This application demonstrates plotting x-y data by graphing a simple

 ' parabola into a MATLAB figure window.

 ' </summary>

 Class PlotDemoApp

#Region " MAIN "

 ' <summary>

 ' The main entry point for the application.

 ' </summary>

 Shared Sub Main(ByVal args() As String)

 Try

 Const numPoints As Integer = 10 ' Number of points to plot

 Dim idx As Integer

 Dim plotValues(,) As Double = New Double(1, numPoints - 1) {}

 Dim coords As MWNumericArray

 'Plot 5x vs x^2

 For idx = 0 To numPoints - 1

 Dim x As Double = idx + 1

 plotValues(0, idx) = x * 5

 plotValues(1, idx) = x * x

 Next idx

 coords = New MWNumericArray(plotValues)

 ' Create a new plotter object

 Dim plotter As Plotter = New Plotter

 ' Plot the values

 plotter.drawgraph(coords)

4 Microsoft Visual Basic Integration Examples

4-6

 Console.ReadLine() ' Wait for user to exit application

 Catch exception As Exception

 Console.WriteLine("Error: {0}", exception)

 End Try

 End Sub

#End Region

 End Class

End Namespace

2 Build the PlotApp application using Visual Studio .NET.

a The PlotVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
PlotVBApp.vbproj in Windows Explorer. You can also open it from the
desktop by right-clicking PlotVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the PlotComp component
which you built in a previous step. (The component, PlotComp.dll, is in the
\PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your work
area.)

3 Build and run the application in Visual Studio .NET.

 Variable Arguments (Visual Basic)

4-7

Variable Arguments (Visual Basic)

To create the component for this example, see “Passing Variable Arguments (C#)” on
page 3-6. Then create a Microsoft Visual Basic application as follows:

1 Review the sample application for this example in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\NET\VarArgExample

\VarArgVBApp\VarArgApp.vb.

The program listing is shown here.

VarArgApp.vb

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports VarArgComp

Namespace MathWorks.Demo.VarArgDemoApp

' <summary>

' This application demonstrates how to call components having methods with

' varargin/vargout arguments.

' </summary>

Class VarArgDemoApp

#Region " MAIN "

 ' <summary>

 ' The main entry point for the application.

 ' </summary>

 Shared Sub Main(ByVal args() As String)

 ' Initialize the input data

 Dim colorSpec As MWNumericArray =

 New MWNumericArray(New Double() {0.9, 0.0, 0.0})

 Dim data As MWNumericArray =

 New MWNumericArray(New Integer(,) {{1, 2}, {2, 4}, {3, 6}, {4, 8}, {5, 10}})

 Dim coords() As MWArray = Nothing

 Try

 ' Create a new plotter object

 Dim plotter As Plotter = New Plotter

 'Extract a variable number of two element x and y coordinate

 ' vectors from the data array

 coords = plotter.extractcoords(5, data)

 ' Draw a graph using the specified color to connect the variable number of

 ' input coordinates.

 ' Return a two column data array containing the input coordinates.

4 Microsoft Visual Basic Integration Examples

4-8

 data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2),

 coords(3), coords(4)), _

 MWNumericArray)

 Console.WriteLine("result={0}{1}", Chr(10), data)

 Console.ReadLine() ' Wait for user to exit application

 ' Note: You can also pass in the coordinate array directly.

 data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

 Console.WriteLine("result=\{0}{1}", Chr(10), data)

 Console.ReadLine() ' Wait for user to exit application

 Catch exception As Exception

 Console.WriteLine("Error: {0}", exception)

 End Try

 End Sub

#End Region

 End Class

End Namespace

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the MWArray class
library

• Creates a Plotter object
• Calls the extracoords and drawgraph methods
• Uses MWNumericArray to handle the data needed by the methods

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Uses a try-catch-finally block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph method:

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2),

 coords(3), coords(4)), MWNumericArray)

...

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

2 Build the VarArgApp application using Visual Studio .NET.

 Variable Arguments (Visual Basic)

4-9

a The VarArgVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgVBApp.vbproj in Windows Explorer. You can also open it from the
desktop by right-clicking VarArgVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or update the location of) a reference to the VarArgComp
component which you built in a previous step. (The component,
VarArgComp.dll, is in the \VarArgExample\VarArgComp\x86\V2.0\Debug
\distrib subfolder of your work area.)

3 Build and run the application in Visual Studio .NET.

4 Microsoft Visual Basic Integration Examples

4-10

Spectral Analysis (Visual Basic)

To create the component for this example, see the first few steps of the “Spectral Analysis
(C#)” on page 3-10. Then create a Microsoft Visual Basic application as follows:

1 Review the sample application for this example in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\NET\SpectraExample\SpectraVBApp

\SpectraApp.vb.

The program listing is shown here.

SpectraApp.vb

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports SpectraComp

Namespace MathWorks.Examples.SpectraApp

 ' <summary>

 ' This application computes and plots the power spectral density of an input signal.

 ' </summary>

 Class SpectraDemoApp

#Region " MAIN "

 ' <summary>

 ' The main entry point for the application.

 ' </summary>

 Shared Sub Main(ByVal args() As String)

 Try

 Const interval As Double = 0.01 ' The sampling interval

 Const numSamples As Integer = 1001 ' The number of samples

 ' Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

 ' random signal. Duration= 10; Sampling interval= 0.01

 Dim data As MWNumericArray = New MWNumericArray(MWArrayComplexity.Real,

 MWNumericType.Double, numSamples)

 Dim random As Random = New Random

 ' Initialize data

 Dim t As Double

 Dim idx As Integer

 For idx = 1 To numSamples

 t = (idx - 1) * interval

 data(idx) = New MWNumericArray(Math.Sin(2.0 * Math.PI * 15.0 * t) +

 Math.Sin(2.0 * Math.PI * 40.0 * t) +

 random.NextDouble())

 Next idx

 ' Create a new signal analyzer object

 Spectral Analysis (Visual Basic)

4-11

 Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

 ' Compute the fft and power spectral density for the data array

 Dim argsOut() As MWArray = signalAnalyzer.computefft(3, data,

 MWArray.op_Implicit(interval))

 ' Print the first twenty elements of each result array

 Dim numElements As Integer = 20

 Dim resultArray As MWNumericArray =

 New MWNumericArray(MWArrayComplexity.Complex,

 MWNumericType.Double, numElements)

 For idx = 1 To numElements

 resultArray(idx) = (CType(argsOut(0), MWNumericArray))(idx)

 Next idx

 Console.WriteLine("FFT:{0}{1}{2}", Chr(10), resultArray, Chr(10))

 For idx = 1 To numElements

 resultArray(idx) = (CType(argsOut(1), MWNumericArray))(idx)

 Next idx

 Console.WriteLine("Frequency:{0}{1}{2}", Chr(10), resultArray, Chr(10))

 For idx = 1 To numElements

 resultArray(idx) = (CType(argsOut(2), MWNumericArray))(idx)

 Next idx

 Console.WriteLine("Power Spectral Density:{0}{1}{2}",

 Chr(10), resultArray, Chr(10))

 ' Create a new plotter object

 Dim plotter As Plotter = New Plotter

 ' Plot the fft and power spectral density for the data array

 plotter.plotfft(argsOut(0), argsOut(1), argsOut(2))

 Console.ReadLine() ' Wait for user to exit application

 Catch exception As Exception

 Console.WriteLine("Error: {0}", exception)

 End Try

 End Sub

#End Region

 End Class

End Namespace

The program does the following:

• Constructs an input array with values representing a random signal with two
sinusoids at 15 and 40 Hz embedded inside of it

• Uses MWNumericArray to handle data conversion

4 Microsoft Visual Basic Integration Examples

4-12

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Instantiates a SignalAnalyzer object
• Calls the computefft method, which computes the FFT, frequency, and the

spectral density
• Instantiates a Plotter object
• Calls the plotfft method, which plots the data
• Uses a try/catch block to handle exceptions

The following statements

Dim data As MWNumericArray = New MWNumericArray_

 (MWArrayComplexity.Real, MWNumericType.Double, numSamples)

...

Dim resultArray As MWNumericArray = New MWNumericArray_

 (MWArrayComplexity.Complex,

 MWNumericType.Double, numElements)

show how to use the MWArray class library to construct the necessary data types.

The following statement

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

creates an instance of the class SignalAnalyzer, and the following statement

Dim argsOut() As MWArray =

 signalAnalyzer.computefft(3, data,

 MWArray.op_Implicit(interval))

calls the method computefft and request three outputs.
2 Build the SpectraApp application using Visual Studio .NET.

a The SpectraVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
SpectraVBApp.vbproj in Windows Explorer. You can also open it from the
desktop by right-clicking SpectraVBApp.vbproj > Open Outside MATLAB.

 Spectral Analysis (Visual Basic)

4-13

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or update the location of) a reference to the SpectraComp
component which you built in a previous step. (The component,
SpectraComp.dll, is in the \SpectraExample\SpectraComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

3 Build and run the application in Visual Studio .NET.

4 Microsoft Visual Basic Integration Examples

4-14

Matrix Math (Visual Basic)

To create the component for this example, see the first few steps in “Matrix Math (C#)”
on page 3-15. Then create a Microsoft Visual Basic application as follows.

1 Review the sample application for this example in:
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MatrixMathExample\MatrixMathVBApp\MatrixMathApp.vb.

The program listing is shown here.

MatrixMathApp.vb

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MatrixMathComp

Namespace MathWorks.Demo.MatrixMathApp

 ' <summary>

 ' This application computes cholesky, LU, and QR factorizations of a

 ' finite difference matrix of order N.

 ' The order is passed into the application on the command line.

 ' </summary>

 ' <remarks>

 ' Command Line Arguments:

 ' <newpara></newpara>

 ' args[0] - Matrix order(N)

 ' <newpara></newpara>

 ' args[1] - (optional) sparse; Use a sparse matrix

 ' </remarks>

 Class MatrixMathDemoApp

#Region " MAIN "

 ' <summary>

 ' The main entry point for the application.

 ' </summary>

 Shared Sub Main(ByVal args() As String)

 Dim makeSparse As Boolean = True

 Dim matrixOrder As Integer = 4

 Dim matrix As MWNumericArray = Nothing ' The matrix to factor

 Dim argOut As MWArray = Nothing ' Stores single factorization result

 Dim argsOut() As MWArray = Nothing ' Stores multiple factorization results

 Try

 ' If no argument specified, use defaults

 If (0 <> args.Length) Then

 'Convert matrix order

 matrixOrder = Int32.Parse(args(0))

 Matrix Math (Visual Basic)

4-15

 If (0 > matrixOrder) Then

 Throw New ArgumentOutOfRangeException("matrixOrder", matrixOrder, _

 "Must enter a positive integer for the matrix order(N)")

 End If

 makeSparse = ((1 < args.Length) AndAlso (args(1).Equals("sparse")))

 End If

 ' Create the test matrix. If the second argument

 ' is "sparse", create a sparse matrix.

 matrix = IIf(makeSparse, _

 MWNumericArray.MakeSparse(matrixOrder, matrixOrder,

 MWArrayComplexity.Real,

 (matrixOrder + (2 * (matrixOrder - 1)))), _

 New MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double,

 matrixOrder, matrixOrder))

 ' Initialize the test matrix

 For rowIdx As Integer = 1 To matrixOrder

 For colIdx As Integer = 1 To matrixOrder

 If rowIdx = colIdx Then

 matrix(rowIdx, colIdx) = New MWNumericArray(2.0)

 ElseIf colIdx = rowIdx + 1 Or colIdx = rowIdx - 1 Then

 matrix(rowIdx, colIdx) = New MWNumericArray(-1.0)

 End If

 Next colIdx

 Next rowIdx

 ' Create a new factor object

 Dim factor As Factor = New Factor

 ' Print the test matrix

 Console.WriteLine("Test Matrix:{0}{1}{2}", Chr(10), matrix, Chr(10))

 ' Compute and print the cholesky factorization using

 ' the single output syntax

 argOut = factor.cholesky(matrix)

 Console.WriteLine("Cholesky Factorization:{0}{1}{2}",

 Chr(10), argOut, Chr(10))

 ' Compute and print the LU factorization using the multiple output syntax

 argsOut = factor.ludecomp(2, matrix)

 Console.WriteLine("LU Factorization:

 {0}L Matrix:{1}{2}{3}U Matrix:{4}{5}{6}", Chr(10), Chr(10),

 argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

 MWNumericArray.DisposeArray(argsOut)

 ' Compute and print the QR factorization

 argsOut = factor.qrdecomp(2, matrix)

 Console.WriteLine("QR Factorization:

 {0}Q Matrix:{1}{2}{3}R Matrix:{4}{5}{6}", Chr(10), Chr(10),

 argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

 Console.ReadLine()

 Catch exception As Exception

4 Microsoft Visual Basic Integration Examples

4-16

 Console.WriteLine("Error: {0}", exception)

 Finally

 ' Free native resources

 If Not (matrix Is Nothing) Then

 matrix.Dispose()

 End If

 If Not (argOut Is Nothing) Then

 argOut.Dispose()

 End If

 MWNumericArray.DisposeArray(argsOut)

 End Try

 End Sub

#End Region

 End Class

End Namespace

The statement

Dim factor As Factor = New Factor

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB functions:

argOut = factor.cholesky(matrix)

argsOut = factor.ludecomp(2, matrix)

...

argsOut = factor.qrdecomp(2, matrix)

Note: See “Understanding the MatrixMath Program” on page 3-20 for more details
about the structure of this program.

2 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathVBApp folder contains a Visual Studio .NET project file
for this example. Open the project in Visual Studio .NET by double-clicking
MatrixMathVBApp.vbproj in Windows Explorer. You can also open it from
the desktop by right-clicking MatrixMathVBApp.vbproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

 Matrix Math (Visual Basic)

4-17

c If necessary, add (or update the location of) a reference to the MatrixMathComp
component which you built in a previous step. (The component,
MatrixMathComp.dll, is in the \MatrixMathExample\MatrixMathComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

3 Build and run the application in Visual Studio .NET.

4 Microsoft Visual Basic Integration Examples

4-18

Phone Book (Visual Basic)

In this section...

“makephone Function” on page 4-18
“Procedure” on page 4-18

makephone Function

The makephone function takes a structure array as an input, modifies it, and supplies
the modified array as an output.

Note: For complete reference information about the MWArray class hierarchy, see the
MWArray API documentation.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample subfolder
in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:
function book = makephone(friends)

book = friends;

for i = 1:numel(friends)

 numberStr = num2str(book(i).phone);

 book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in PhoneBookExample\PhoneBookComp
\makephone.m.

3 From the MATLAB apps gallery, open the Library Compiler app.
4 Build the .NET component. See the instructions in “Create a .NET Assembly” for

more details. Use the following information:

 Phone Book (Visual Basic)

4-19

Project Name PhoneBookComp

Class Name phonebook

File to compile makephone.m

5 Write source code for an application that accesses the component.

The sample application for this example is in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\NET

PhoneBookExample\PhoneBookVBApp\PhoneBookApp.vb.

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure array.

The program listing is shown here.

PhoneBookApp.vb

' Necessary package imports

Imports MathWorks.MATLAB.NET.Arrays

Imports PhoneBookComp

'

' getphone class demonstrates the use of the MWStructArray class

'

Public Module PhoneBookVBApp

 Public Sub Main()

 Dim thePhonebook As phonebook 'Stores deployment class instance

 Dim friends As MWStructArray 'Sample input data

 Dim result As Object() 'Stores the result

 Dim book As MWStructArray 'Ouptut data extracted from result

 ' Create the new deployment object

 thePhonebook = New phonebook()

 ' Create an MWStructArray with two fields

 Dim myFieldNames As String() = {"name", "phone"}

 friends = New MWStructArray(2, 2, myFieldNames)

 ' Populate struct with some sample data --- friends and phone numbers

 friends("name", 1) = New MWCharArray("Jordan Robert")

 friends("phone", 1) = 3386

 friends("name", 2) = New MWCharArray("Mary Smith")

 friends("phone", 2) = 3912

 friends("name", 3) = New MWCharArray("Stacy Flora")

 friends("phone", 3) = 3238

 friends("name", 4) = New MWCharArray("Harry Alpert")

 friends("phone", 4) = 3077

 ' Show some of the sample data

 Console.WriteLine("Friends: ")

 Console.WriteLine(friends.ToString())

4 Microsoft Visual Basic Integration Examples

4-20

 ' Pass it to an MATLAB function that determines external phone number

 result = thePhonebook.makephone(1, friends)

 book = CType(result(0), MWStructArray)

 Console.WriteLine("Result: ")

 Console.WriteLine(book.ToString())

 ' Extract some data from the returned structure '

 Console.WriteLine("Result record 2:")

 Console.WriteLine(book("name", 2))

 Console.WriteLine(book("phone", 2))

 Console.WriteLine(book("external", 2))

 ' Print the entire result structure using the helper function below

 Console.WriteLine("")

 Console.WriteLine("Entire structure:")

 dispStruct(book)

 End Sub

 Sub dispStruct(ByVal arr As MWStructArray)

 Console.WriteLine("Number of Elements: " + arr.NumberOfElements.ToString())

 'int numDims = arr.NumberofDimensions

 Dim dims As Integer() = arr.Dimensions

 Console.Write("Dimensions: " + dims(0).ToString())

 Dim i As Integer

 For i = 1 To dims.Length

 Console.WriteLine("-by-" + dims(i - 1).ToString())

 Next i

 Console.WriteLine("")

 Console.WriteLine("Number of Fields: " + arr.NumberOfFields.ToString())

 Console.WriteLine("Standard MATLAB view:")

 Console.WriteLine(arr.ToString())

 Console.WriteLine("Walking structure:")

 Dim fieldNames As String() = arr.FieldNames

 Dim element As Integer

 For element = 1 To arr.NumberOfElements

 Console.WriteLine("Element " + element.ToString())

 Dim field As Integer

 For field = 0 To arr.NumberOfFields - 1

 Dim fieldVal As MWArray = arr(arr.FieldNames(field), element)

 ' Recursively print substructures, give string display of other classes

 If (TypeOf fieldVal Is MWStructArray) Then

 Console.WriteLine(" " + fieldNames(field) + ": nested structure:")

 Console.WriteLine("+++ Begin of \"" + fieldNames[field] +

 " \ " nested structure")

 dispStruct(CType(fieldVal, MWStructArray))

 Console.WriteLine("+++ End of \"" + fieldNames[field] +

 " \ " nested structure")

 Else

 Console.Write(" " + fieldNames(field) + ": ")

 Console.WriteLine(fieldVal.ToString())

 End If

 Next field

 Next element

 End Sub

End Module

 Phone Book (Visual Basic)

4-21

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by adding
an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookVBApp application using Visual Studio .NET.

a The PhoneBookVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
PhoneBookVBApp.vbproj in Windows Explorer. You can also open it from
the desktop by right-clicking PhoneBookVBApp.vbproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the PhoneBookVBComp
component which you built in a previous step. (The component,
PhoneBookComp.dll, is in the \PhoneBookExample\PhoneBookVBApp
\x86\V2.0\Debug\distrib subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

The getphone program should display the output:

Friends:

2x2 struct array with fields:

 name

 phone

Result:

2x2 struct array with fields:

 name

 phone

 external

Result record 2:

Mary Smith

3912

(508) 555-3912

4 Microsoft Visual Basic Integration Examples

4-22

Entire structure:

Number of Elements: 4

Dimensions: 2-by-2

Number of Fields: 3

Standard MATLAB view:

2x2 struct array with fields:

 name

 phone

 external

Walking structure:

Element 1

 name: Jordan Robert

 phone: 3386

 external: (508) 555-3386

Element 2

 name: Mary Smith

 phone: 3912

 external: (508) 555-3912

Element 3

 name: Stacy Flora

 phone: 3238

 external: (508) 555-3238

Element 4

 name: Harry Alpert

 phone: 3077

 external: (508) 555-3077

 Optimization (Visual Basic)

4-23

Optimization (Visual Basic)

Optimization Example

• “Purpose” on page 4-23
• “OptimizeComp Component” on page 4-23
• “Procedure” on page 4-24

Purpose

This example shows how to:

• Use the MATLAB Compiler SDK product to create an assembly (OptimizeComp).
This assembly applies MATLAB optimization routines to objective functions
implemented as .NET objects.

• Access the component in a .NET application (OptimizeApp.vb). Then, use the
MWObjectArray class to create a reference to a .NET object (BananaFunction.vb),
and pass that object to the component.

Note: For information about these data conversion classes, see the MATLAB
MWArray Class Library Reference, available in the matlabroot\help
\dotnetbuilder\MWArrayAPI folder, where matlabroot represents your
MATLAB installation folder

• Build and run the application.

OptimizeComp Component

The component (OptimizeComp) finds a local minimum of an objective function and
returns the minimal location and value. The component uses the MATLAB optimization
function fminsearch. This example optimizes the Rosenbrock banana function used in
the fminsearch documentation.

The class OptimizeComp.OptimizeClass performs an unconstrained nonlinear
optimization on an objective function implemented as a .NET object. A method of this
class, doOptim, accepts an initial value (NET object) that implements the objective
function, and returns the location and value of a local minimum.

The second method, displayObj, is a debugging tool that lists the characteristics of
a .NET object. These two methods, doOptim and displayObj, encapsulate MATLAB

4 Microsoft Visual Basic Integration Examples

4-24

functions. The MATLAB code for these two methods resides in doOptim.m and
displayObj.m. You can find this code in matlabroot\toolbox\dotnetbuilder
\Examples\VSVersion\NET\OptimizeExample\OptimizeVBApp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

1 Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\dotnetbuilder\Examples\VSVesrion\NET

\OptimizeExample

2 At the MATLAB command prompt, cd to the new OptimizeExample subfolder
in your work folder.

2 If you have not already done so, set the environment variables that are required on a
development machine.

3 Write the MATLAB code that you want to access. This example uses doOptim.m
and displayObj.m, which already resides in your work folder. The path
is matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET
\OptimizeExample\OptimizeComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)

mWrapper = @(x) h.evaluateFunction(x);

directEval = h.evaluateFunction(x0)

wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)

h

className = class(h)

whos('h')

methods(h)

4 From the MATLAB apps gallery, open the Library Compiler app.
5 As you compile the .NET application using the Library Compiler, use the following

information:

Project Name OptimizeComp

 Optimization (Visual Basic)

4-25

Class Name OptimizeComp.OptimizeClass

File to compile doOptim.m

displayObj.m

6 Write source code for a class (BananaFunction) that implements an object function
to optimize. The sample application for this example is in matlabroot\toolbox
\dotnetbuilder\Examples\VSVersion\NET\OptimizeExample

\OptimizeVBApp. The program listing for BananaFunction.vb displays the
following code:

Imports System

Namespace MathWorks.Examples.Optimize

 Class BananaFunction

#Region "Methods"

 Public Sub BananaFunction()

 End Sub

 Public Function evaluateFunction(ByVal x As Double()) As Double

 Dim term1 As Double = 100 * Math.Pow((x(1) - Math.Pow(x(0),

 2.0)), 2.0)

 Dim term2 As Double = Math.Pow((1 - x(0)), 2.0)

 Return term1 + term2

 End Function

#End Region

 End Class

End Namespace

The class implements the Rosenbrock banana function described in the fminsearch
documentation.

7 Customize the application using Visual Studio .NET using the OptimizeVBApp
folder, which contains a Visual Studio .NET project file for this example.

a The OptimizeVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
OptimizeVBApp.vbproj in Windows Explorer. You can also open it from the
desktop by right-clicking OptimizeVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is matlabroot\toolbox
\dotnetbuilder\bin\architecture\framework_version

\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the OptimizeComp
component which you built in a previous step. (The component,

4 Microsoft Visual Basic Integration Examples

4-26

OptimizeComp.dll, is in the \OptimizeExample\OptimizeComp
\x86\V2.0\Debug\distrib subfolder of your work area.)

When run successfully, the program displays the following output:

Using initial points= -1.2000 1

** Properties of .NET Object **

h =

 MathWorks.Examples.Optimize.BananaFunction handle w

 ith no properties.

 Package: MathWorks.Examples.Optimize

className =

MathWorks.Examples.Optimize.BananaFunction

 Name Size Bytes Class Attributes

 h 1x1 60 MathWorks.Examples.Optimize.BananaFunction

Methods for class MathWorks.Examples.Optimize.BananaFunction:

BananaFunction addlistener findprop lt

Equals delete ge ne

GetHashCode eq gt notify

GetType evaluateFunction isvalid

ToString findobj le

**************** Finished displayObj ****************

 Optimization (Visual Basic)

4-27

** Performing unconstrained nonlinear optimization **

directEval =

 24.2000

wrapperEval =

 24.2000

x =

 1.0000 1.0000

fval =

 8.1777e-010

***************** Finished doOptim ******************

Location of minimum: 1.0000 1.0000

Function value at minimum: 8.1777e-010

5

Distribute Integrated .NET
Applications

• “Package .NET Applications” on page 5-2
• “About the MATLAB Runtime” on page 5-3
• “Download the MATLAB Runtime Installer” on page 5-5
• “Install the MATLAB Runtime” on page 5-6
• “MATLAB and MATLAB Runtime on Same Machine” on page 5-10
• “Multiple MATLAB Runtime on Single Machine” on page 5-11
• “Uninstall MATLAB Runtime” on page 5-12

5 Distribute Integrated .NET Applications

5-2

Package .NET Applications

1 Gather and package the following files for installation on end user computers:

• MATLAB Runtime installer

See “Download the MATLAB Runtime Installer” on page 5-5.
• MATLAB generated .NET assembly
• Executable for the application

2 Include directions for installing the MATLAB Runtime.

See “Install the MATLAB Runtime” on page 5-6.

 About the MATLAB Runtime

5-3

About the MATLAB Runtime

In this section...

“How is the MATLAB Runtime Different from MATLAB?” on page 5-3
“Performance Considerations and the MATLAB Runtime” on page 5-4

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other
files that enables the execution of MATLAB files on computers without an installed
version of MATLAB. Applications that use artifacts built with MATLAB Compiler SDK
require access to an appropriate version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB
Runtime on their computers or know the location of a network-installed MATLAB
Runtime. The installers generated by the compiler apps may include the MATLAB
Runtime installer. If you compiled your artifact using mcc, you should direct your
end-users to download the MATLAB Runtime installer from the website http://
www.mathworks.com/products/compiler/mcr.

See “Install the MATLAB Runtime” on page 5-6 for more information.

How is the MATLAB Runtime Different from MATLAB?

The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and imutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the

MATLAB functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the

version of the MATLAB Runtime associated with the version of MATLAB Compiler
SDK with which it was created. For example, if you compiled an application using
version 4.10 (R2009a) of MATLAB Compiler™, users who do not have MATLAB
installed must have version 7.10 of the MATLAB Runtime installed. Use mcrversion
to return the version number of the MATLAB Runtime.

• The MATLAB paths in an MATLAB Runtime instance are fixed and cannot be
changed. To change them, you must first customize them within MATLAB.

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

5 Distribute Integrated .NET Applications

5-4

Performance Considerations and the MATLAB Runtime

MATLAB Compiler SDK was designed to work with a large range of applications that
use the MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language,
including the Java® programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources
consumed by the MATLAB Runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are
threadsafe. This can impact performance.

 Download the MATLAB Runtime Installer

5-5

Download the MATLAB Runtime Installer

Download the MATLAB Runtime from the website at http://www.mathworks.com/
products/compiler/mcr.

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

5 Distribute Integrated .NET Applications

5-6

Install the MATLAB Runtime

In this section...

“Install the MATLAB Runtime Interactively” on page 5-6
“Install the MATLAB Runtime Non-Interactively” on page 5-7

Install the MATLAB Runtime Interactively

To install the MATLAB Runtime:

1 Start the MATLAB Runtime installer.

Computer Steps

Windows Double-click the compiled MATLAB code package self-extracting
archive file, typically named my_program_pkg.exe, where
my_program is the name of the MATLAB code. This extracts
the MATLAB Runtime installer from the archive, along with
all the files that make up the MATLAB Runtime. Once all the
files have been extracted, the MATLAB Runtime installer starts
automatically.

Linux®

Mac

Extract the contents of the compiled package, which is a Zip
file on Linux systems, typically named, my_program_pkg.zip,
where my_program is the name of the compiled MATLAB code.
Use the unzip command to extract the files from the package.

unzip MCRInstaller.zip

Run the MATLAB Runtime installer script, from the directory
where you unzipped the package file, by entering:

./install

For example, if you unzipped the package and MATLAB
Runtime installer in \home\USER, you run the ./install from
\home\USER.

Note: On Mac systems, you may need to enter an administrator
username and password after you run ./install.

 Install the MATLAB Runtime

5-7

2 When the MATLAB Runtime installer starts, it displays a dialog box. Read the
information and then click Next to proceed with the installation.

3 Specify the folder in which you want to install the MATLAB Runtime in the Folder
Selection dialog box.

Note: On Windows systems, you can have multiple versions of the MATLAB
Runtime on your computer but only one installation for any particular version. If
you already have an existing installation, the MATLAB Runtime installer does not
display the Folder Selection dialog box because you can only overwrite the existing
installation in the same folder.

4 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
5 On Linux and Mac systems, after copying files to your disk, the MATLAB Runtime

installer displays the Product Configuration Notes dialog box. This dialog box
contains information necessary for setting your path environment variables. Copy
the path information from this dialog box and then click Next.

6 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively

To install the MATLAB Runtime without having to interact with the installer dialog
boxes, use one of the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user

interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default
values for installation options. You can override these defaults by using MATLAB
Runtime installer command-line options or an installer control file.

Note: When running in silent or automated mode, the installer overwrites the default
installation location.

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

5 Distribute Integrated .NET Applications

5-8

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder,
called $temp in this documentation.

Note: On Windows systems, manually extract the contents of the installer file.
2 Run the MATLAB Runtime installer, specifying the -mode option and -

agreeToLicense yes on the command line.

Note: On most platforms, the installer is located at the root of the folder into which
the archive was extracted. On Windows 64, the installer is located in the archives
bin folder.

Platform Command

Windows setup -mode silent -

agreeToLicense yes

Linux ./install -mode silent -

agreeToLicense yes

Mac OS X ./install -mode silent -

agreeToLicense yes

Note: If you do not include the -agreeToLicense yes the installer will not install
the MATLAB Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the
location defined by your TEMP environment variable.

On Linux and Mac systems, the MATLAB Runtime installer displays the log
information at the command prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values
unless told to do otherwise. Like the MATLAB installer, the MATLAB Runtime
installer accepts a number of command line options that modify the default installation
properties.

 Install the MATLAB Runtime

5-9

Option Description

-destinationFolder Specifies where the MATLAB Runtime will
be installed.

-outputFile Specifies where the installation log file is
written.

-automatedModeTimeout Specifies how long, in milliseconds, that
the dialog boxes are displayed when run in
automatic mode.

-inputFile Specifies an installer control file with the
values for all of the above options.

Note: The MATLAB Runtime installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available for a full
MATLAB installation. Only the options listed in this section are valid for the MATLAB
Runtime installer.

5 Distribute Integrated .NET Applications

5-10

MATLAB and MATLAB Runtime on Same Machine

You do not need to install MATLAB Runtime on your machine if your machine has both
MATLAB and MATLAB Compiler SDK installed. The version of MATLAB should be the
same as the version of MATLAB that was used to create the compiled MATLAB code.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must
adjust the library path according to your needs.

• Windows

To run deployed MATLAB code against MATLAB Runtime install,
mcr_root\ver\runtime\win32|win64 must appear on your system path before
matlabroot\runtime\win32|win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB installation area.

• UNIX®

To run deployed MATLAB code against MATLAB Runtime on Linux, Linux x86-64, or
the <mcr_root>/runtime/<arch> folder must appear on your LD_LIBRARY_PATH
before matlabroot/runtime/<arch>.

To run deployed MATLAB code on Mac OS X, the <mcr_root>/runtime folder must
appear on your DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch> must
appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

 Multiple MATLAB Runtime on Single Machine

5-11

Multiple MATLAB Runtime on Single Machine

MCRInstaller supports the installation of multiple versions of the MATLAB Runtime
on a target machine. This allows applications compiled with different versions of the
MATLAB Runtime to execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you
can remove the unwanted ones. On Windows, run Add or Remove Programs from
the Control Panel to remove any of the previous versions. On UNIX, you manually
delete the unwanted MATLAB Runtime. You can remove unwanted versions before or
after installation of a more recent version of the MATLAB Runtime, as versions can be
installed or removed in any order.

5 Distribute Integrated .NET Applications

5-12

Uninstall MATLAB Runtime

The method you use to uninstall MATLAB Runtime from your computer varies
depending on the type of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control
panel, and double-click MATLAB Runtime in the list.

You can also launch the MATLAB Runtime uninstaller from the
mcr_root\uninstall\bin\arch folder, where mcr_root is your MATLAB
Runtime installation folder and arch is an architecture-specific folder, such as
win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products
dialog box and

3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

Mac

• Exit the application.
• Navigate to your MATLAB Runtime installation folder. For example, the installation

folder might be named MATLAB_Compiler_Runtime.app in your Applications folder.
• Drag your MATLAB Runtime installation folder to the trash, and then select Empty

Trash from the Finder menu.

6

Distribute to End Users

• “Deploy Components to End Users” on page 6-2
• “MATLAB Runtime Run-Time Options” on page 6-5
• “The MATLAB Runtime User Data Interface” on page 6-7
• “MATLAB Runtime Component Cache and Deployable Archive Embedding” on page

6-12
• “Impersonation Implementation Using ASP.NET” on page 6-14
• “Enhanced XML Documentation Files” on page 6-18

6 Distribute to End Users

6-2

Deploy Components to End Users

Install MATLAB Runtime

The MATLAB Runtime is an execution engine made up of the same shared libraries
MATLAB uses to enable execution of MATLAB files on systems without an installed
version of MATLAB.

The MATLAB runtime is now available for downloading from the web to simplify the
distribution of your applications created using the MATLAB Compiler or the MATLAB
Compiler SDK. Download the MATLAB Runtime from the MATLAB runtime product
page.

The MATLAB Runtime installer does the following:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC), as part of

installing the MATLAB Runtime.

MATLAB Runtime Prerequisites

1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of the MATLAB Runtime that runs your application on the target

computer must be compatible with the version of MATLAB Compiler or MATLAB
Compiler SDK that built the deployed code.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer,
using one of the compiler apps. The generated installer contains all files needed to run
the standalone application or shared library built with MATLAB Compiler or MATLAB
Compiler SDK and properly lays them out on a target system.

1 On the Packaging Options section of the compiler interface, select one or both of
the following options:

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

 Deploy Components to End Users

6-3

• Runtime downloaded from web — This option builds an installer that invokes
the MATLAB Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime
installer into the generated installer.

2 Click Package.
3 Distribute the installer as needed.

Install the MATLAB Runtime

This example shows how to install the MATLAB Runtime on a system.

If you are given an installer containing the compiled artifacts, then the MATLAB
Runtime is installed along with the application or shared library. If you are given just
the raw binary files, download the MATLAB runtime installer from the web and run the
installer.

Note: If you are running on a platform other than Windows, “Modifying the Path” on
the target machine. Setting the paths enables your application to find the MATLAB
Runtime.

Windows paths are set automatically. On Linux and Mac, you can use the run script to
set paths. See “Using MATLAB Compiler on Mac or Linux” for detailed information on
performing all deployment tasks specifically with UNIX variants such as Linux and Mac.

Where to find the MWArray API

The MATLAB Runtime also includes MWArray.dll, which contains an API for
exchanging data between your applications and the MATLAB Runtime. You can find
documentation for this API in the Help folder of the installation.

On target machines where the MATLAB Runtime installer is run, it puts
the MWArray assembly in mcrRoot\toolbox\dotnetbuilder\bin
\architecture\framework_version.

6 Distribute to End Users

6-4

Sample Directory Structure of the MATLAB Runtime Including MWArray.dll

 MATLAB Runtime Run-Time Options

6-5

MATLAB Runtime Run-Time Options

In this section...

“What Run-Time Options Can You Specify?” on page 6-5
“Getting MATLAB Runtime Option Values Using MWMCR” on page 6-5

What Run-Time Options Can You Specify?

You can pass the options -nojvm and -logfile to MATLAB Compiler SDK from a .NET
client application using the assembly-level attributes NOJVM and LOGFILE. You retrieve
values of these attributes by calling methods of the MWMCR class to access MATLAB
Runtime attributes and state.

Getting MATLAB Runtime Option Values Using MWMCR

The MWMCR class provides several methods to get runtime option values. The following
table lists methods supported by this class.

MWMCR Method Purpose

MWMCR.IsMCRInitialized() Returns true if the runtime is initialized,
otherwise returns false.

MWMCR.IsMCRJVMEnabled() Returns true if the runtime is launched
with .NET Virtual Machine (JVM),
otherwise returns false.

MWMCR.GetMCRLogFileName() Returns the name of the log file passed
with the LOGFILE attribute.

Default MATLAB Runtime Options

If you pass no options, the MATLAB Runtime is launched with default option values:

MATLAB Runtime Run-Time Option Default Option Values

.NET Virtual Machine (JVM) NOJVM(false)

Log file usage LOGFILE(null)

These options are all write-once, read-only properties.

6 Distribute to End Users

6-6

Use the following attributes to represent the runtime options you want to modify.

MWMCR Attribute Purpose

NOJVM Lets users launch the runtime with or
without a JVM. It takes a Boolean as input.
For example, NOJVM(true) launches the
runtime without a JVM.

LOGFILE Lets users pass the name of a log file,
taking the file name as input. For example,
LOGFILE("logfile3.txt") .

Passing MATLAB Runtime Option Values from a C# Application

Following is an example of how MATLAB Runtime option values are passed from a
client-side C# application:

 [assembly: NOJVM(false), LOGFILE("logfile3.txt")]

 namespace App1

 {

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("In side main...");

 try

 {

 myclass cls = new myclass();

 cls.hello();

 Console.WriteLine("Done!!");

 Console.ReadLine();

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 }

 }

 }

 The MATLAB Runtime User Data Interface

6-7

The MATLAB Runtime User Data Interface

This feature allows data to be shared between a MATLAB Runtime instance, the
MATLAB code running on that runtime instance, and the wrapper code that created the
MATLAB Runtime. Through calls to the MATLAB Runtime User Data interface API,
you access MATLAB Runtime data by creating a per-runtime-instance associative array
of mxArrays, consisting of a mapping from string keys to mxArray values. Reasons for
doing this include, but are not limited to:

• You need to supply run-time profile information to a client running an application
created with the Parallel Computing Toolbox™ software. Profiles may be supplied
(and changed) on a per-execution basis. For example, two instances of the same
application may run simultaneously with different profiles.

• You want to initialize the MATLAB Runtime with constant values that can be
accessed by all your MATLAB applications.

• You want to set up a global workspace — a global variable or variables that MATLAB
and your client can access.

• You want to store the state of any variable or group of variables.

MATLAB Compiler SDK software supports a per-MATLAB Runtime instance state
access through an object-oriented API. Access to a per-runtime instance state is optional.
You can access this state by adding setmcruserdata.m and getmcruserdata.m to
your deployment project or by specifying them on the command line. Alternatively, you
can use a helper function to call these methods as shown in “Supplying Cluster Profiles
for Parallel Computing Toolbox Applications” on page 6-7.

For more information, see “The MATLAB Runtime User Data Interface”.

Supplying Cluster Profiles for Parallel Computing Toolbox Applications

Following is a complete example of how you can use the MATLAB Runtime User Data
Interface as a mechanism to specify a cluster profile for Parallel Computing Toolbox
applications.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

6 Distribute to End Users

6-8

The output assumes that the default profile is local.

function speedup = sample_pct (n)

warning off all;

tic

if(ischar(n))

 n=str2double(n);

end

for ii = 1:n

 (cov(sin(magic(n)+rand(n,n))));

end

time1 =toc;

parpool;

tic

parfor ii = 1:n

 (cov(sin(magic(n)+rand(n,n))));

end

time2 =toc;

disp(['Normal loop times: ' num2str(time1) ...

 ',parallel loop time: ' num2str(time2)]);

disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

 ' times faster than normal']);

delete(gcp);

disp('done');

speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if needed.

a = sample_pct(200)

3 Verify that you get the following results;

Starting matlabpool using the 'local'

 profile ... connected to 4 labs.

Normal loop times: 1.4625, parallel loop time: 0.82891

parallel speedup: 1.7643 times faster than normal

Sending a stop signal to all the labs ... stopped.

done

a =

 1.7643

Step 2: Set the Parallel Computing Toolbox Profile

In order to compile MATLAB code to a .NET component and utilize Parallel Computing
Toolbox, the mcruserdata must be set directly from MATLAB. There is no .NET API

 The MATLAB Runtime User Data Interface

6-9

available to access the MCRUserdata as there is for C and C++ applications built with
MATLAB Compiler SDK.

To set the mcruserdata from MATLAB, create an init function in your .NET class.
This is a separate MATLAB function that uses setmcruserdata to set the Parallel
Computing Toolbox profile once. You then call your other functions to utilize the Parallel
Computing Toolbox functions.

Create the following init function:

function init_sample_pct

% Set the Parallel Profile:

if(isdeployed)

 [profile] = uigetfile('*.settings');

 % let the USER select file

 setmcruserdata('ParallelProfile',

 [profile]);

end

Step 3: Compile Your Function

You can compile your function from the command line by entering the following:
mcc -W 'dotnet:netPctComp,NetPctClass'

 init_sample_pct.m sample_pct.m -T link:lib

Alternately, you can use the Library Compiler app as follows:

1 Follow the steps in “Create a .NET Assembly” to compile your application. When the
compilation finishes, a new folder (with the same name as the project) is created.
This folder contains two subfolders: distrib and src.

Project Name netPctComp

Class Name NetPctClass

File to Compile sample_pct.m and
init_sample_pct.m

Note: If you are using the GPU feature of Parallel Computing Toolbox, you need to
manually add the PTX and CU files.

If you are using the Library Compiler app, click Add files/directories on the
Build tab.

6 Distribute to End Users

6-10

If you are using the mcc command, use the -a option.
2 To deploy the compiled application, copy the for_redistribution_files_only

folder, which contains the following, to your end users.

• netPctComp.dll

• MWArray.dll

• MATLAB Runtime Installer
• Cluster profile

Note: The end user's target machine must have access to the cluster.

Step 4: Write the .NET Driver Application

After adding references to your component and to MWArray in your Microsoft Visual
Studio project, write the following .NET driver application to use the component, as
follows. See “Integrate a .NET Assembly Into a C# Application” on page 1-4 for more
information.

Note: This example code was written using Microsoft Visual Studio 2008.

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using netPctComp;

namespace PctNet

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 NetPctClass A = new NetPctClass();

 // Initialize the PCT set up

 A.init_sample_pct();

 double var = 300;

 MWNumericArray out1;

 MWNumericArray in1 = new MWNumericArray(300);

 The MATLAB Runtime User Data Interface

6-11

 out1 = (MWNumericArray)A.sample_pct(in1);

 Console.WriteLine("The speedup is {0}", out1);

 Console.ReadLine();

 // Wait for user to exit application

 }

 catch (Exception exception)

 {

 Console.WriteLine("Error: {0}", exception);

 }

 }

 }

}

The output is as follows:

6 Distribute to End Users

6-12

MATLAB Runtime Component Cache and Deployable Archive
Embedding

Deployable archive data is automatically embedded directly in .NET Assemblies by
default and extracted to a temporary folder.

Automatic embedding enables usage of the MATLAB Runtime component cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically
extracted

• Add diagnostic error printing options that can be used when automatically extracting
the deployable archive, for troubleshooting purposes

• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the deployable
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache for
diagnostic reasons. This can
be very helpful if problems are
encountered during deployable
archive extraction.

Logging details are turned off by
default (for example, when this
variable has no value).

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this variable
is 32M (megabytes). This
may, however, be changed
after you have set the variable
the first time. Edit the file

 MATLAB Runtime Component Cache and Deployable Archive Embedding

6-13

Environment Variable Purpose Notes

.max_size, which resides in the
file designated by running the
mcrcachedir command, with
the desired cache size limit.

Note: If you run mcc specifying conflicting wrapper and target types, the archive will not
be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the archive embedded in it, as if you had specified
a -C option to the command line.

Caution Do not extract the files within the.ctf file and place them individually under
version control. Since the .ctf file contains interdependent MATLAB functions and
data, the files within it must be accessed only by accessing the .ctf file. For best results,
place the entire .ctf file under version control.

6 Distribute to End Users

6-14

Impersonation Implementation Using ASP.NET

When running third-party software (for example, SQL Server®) there are times when it
is necessary to use impersonation to perform Windows authentication in an ASP.NET
application.

In deployed applications, impersonated credentials are passed in from IIS. However,
since impersonation operates on a per-thread basis, this can sometimes present problems
when processing the MATLAB Runtime thread in a multi-threaded deployed application.

Use the following examples to turn impersonation on and off in your MATLAB file, to
avoid problems stemming from MATLAB Runtime thread processing issues.

Turning On Impersonation in a MATLAB MEX-file

#include mex.h

#include windows.h

/*

 *This mex function is called with a single int which

 *represents the user

 *identity token. We use this token to impersonate a

 *user on the interpreter

 *thread. This acts as a workaround for ASP.NET

 *applications that use

 *impersonation to pass the proper credentials

 *to SQL Server for windows

 *authentication. The function returns non zero status

 *for success, zero otherwise.

 **/

void mexFunction(int nlhs,

 mxArray * plhs[],

 int nrhs,

 const mxArray * prhs[])

{

 plhs[0] = mxCreateDoubleScalar(0); //return status

 HANDLE hToken =

 reinterpret_cast(*(mwSize *)mxGetData(prhs[0]));

 if(nrhs != 1)

 {

 mexErrMsgTxt("Incorrect number of input argument(s).

 Expecting 1.");

 Impersonation Implementation Using ASP.NET

6-15

 }

 int hr;

 if(!(hr = ImpersonateLoggedOnUser(hToken)))

 {

 mexErrMsgTxt("Error impersonating.\n");

 }

 *(mxGetPr(plhs[0])) = hr;

}

Turning Off Impersonation in a MATLAB MEX-file

#include mex.h

#include windows.h

/*

 *This mex function reverts to the old identity on the

 interpreter thread **/

void mexFunction(int nlhs,

 mxArray * plhs[],

 int nrhs,

 const mxArray * prhs[])

{

 if(!RevertToSelf())

 {

 mexErrMsgTxt("Failed to revert to the old

 identity.");

 }

}

Code Added to Support Impersonation in ASP.NET Application

Monitor.Enter(someObj);

DeployedComponent.DeployedComponentClass myComp;

try

{

 System.Security.Principal.WindowsIdentity myIdentity =

 System.Security.Principal.WindowsIdentity.GetCurrent();

 //short circuit if user app is not impersonated

 if(myIdentity.isImpersonated())

6 Distribute to End Users

6-16

 {

 myComp = new DeployedComponent.

 DeployedComponentClass ();

 //Run Users code

 MWArray[] output = myComp.impersonateUser(1,

 getToken());

 }

 else

 {

 //Run Users code

 }

}

Catch(Exception e)

{

}

finally

{

 if(myComp!=null)

 myComp.stopImpersonation();

 Monitor.Exit(someObj;)

}

//

//

//Utility method to read the token for the current user

//and wraps it in a MWArray private MWNumericArray getToken()

{

 System.Security.Principal.WindowsIdentity myIdentity =

 System.Security.Principal.WindowsIdentity.GetCurrent();

 MWNumericArray a = null;

 if (IntPtr.Size == 4)

 {

 int intToken = myIdentity.Token.ToInt32();

 a = new MWNumericArray(intToken, false);

 }

 else

 {

 Int64 intToken = myIdentity.Token.ToInt64();

 a = new MWNumericArray(intToken, false);

 Impersonation Implementation Using ASP.NET

6-17

 }

 return a;

6 Distribute to End Users

6-18

Enhanced XML Documentation Files

Every MATLAB Compiler SDK .NET assembly includes a readme.txt file in the src
and distrib directories. This file outlines the contents of auto-generated documentation
templates included with your built component. The documentation templates are HTML
and XML files that can be read and processed by any number of third-party tools.

• MWArray.xml — This file describes the MWArray data conversion classes and their
associated methods. Documentation for MWArray classes and their methods are
available here.

• component_name.xml — This file contains the code comments for your component.
Using a third party documentation tool, you can combine this file with MWArray.xml
to produce a complete documentation file that can be packaged with the component
assembly for distribution to end users.

• component_name_overview.html — Optionally include this file in the generated
documentation file. It contains an overview of the steps needed to access the
component and how to use the data conversion classes, contained in the MWArray
class hierarchy, to pass arguments to the generated component and return the
results.

7

Type-Safe Interfaces, WCF, and MEF

• “Type-Safe Interfaces: An Alternative to MWArray” on page 7-2
• “Advantages of Implementing a Type-Safe Interface” on page 7-4
• “How Type-Safe Interfaces Work” on page 7-5
• “Generate the Type-Safe API with an Assembly” on page 7-8
• “Implement a Type-Safe Interface” on page 7-10
• “Create Managed Extensibility Framework (MEF) Plug-Ins” on page 7-12

7 Type-Safe Interfaces, WCF, and MEF

7-2

Type-Safe Interfaces: An Alternative to MWArray

The MATLAB data types are incompatible with native .NET types. To send data between
your application and .NET, you perform these tasks:

1 Marshal data from .NET input data to a deployed function by creating an MWArray
object from native .NET data. The public functions in a deployed component return
MWArray objects.

2 Marshal the output MATLAB data in an MWArray into native .NET data by calling
one of the MWArray marshaling methods (ToArray(), for example).

Manual Data Marshaling Without a Type-Safe Interface

As you can see, manually marshaling data adds complexity and potential failure points to
the task of integrating deployed components into a .NET application. This is particularly
true for these reasons:

• Your application cannot detect type mismatch errors until run-time. For
example, you might accidentally create an MWArray from a string and pass the array
to a deployed function that expects a number. Because the wrapper code generated by

 Type-Safe Interfaces: An Alternative to MWArray

7-3

MATLAB Compiler SDK expects an MWArray, the .NET compiler is unable to detect
this error and the deployed function either throws an exception or returns the wrong
answer.

• Your end users must learn how to use the MWArray data type or alternately
mask the MWArray data type behind a manually written (and manually maintained)
API. This introduces unwanted training time and places resource demands on a
potentially overcommitted staff.

You can avoid performing MWArray data marshaling by using type-safe interfaces. Such
interfaces minimize explicit type conversions by hiding the MWArray type from the
calling application. Using type-safe interfaces allows .NET Developers to work directly
with familiar native data types.

Simplified Data Marshaling With a Type-Safe Interface

7 Type-Safe Interfaces, WCF, and MEF

7-4

Advantages of Implementing a Type-Safe Interface

Some of the reasons to implement type-safe interfaces include:

• You avoid training and coding costs associated with teaching end users to work
with the MWArray API.

• You minimize cost of data you must marshal by either placing MWArray objects
in type-safe interfaces or by calling MWArrayfunctions in the deployed MATLAB code.

• Flexibility — you mix type-safe interfaces with manual data marshaling to
accommodate data of varying sizes and access patterns. For example, you may have
a few large data objects (images, for example) that would incur excess cost to your
organization if managed with a type-safe interface. By mixing type-safe interfaces and
manual marshaling, smaller data types can be managed automatically with the type-
safe interface and your large data can be managed on an as-needed basis.

 How Type-Safe Interfaces Work

7-5

How Type-Safe Interfaces Work

Every MATLAB Compiler SDK .NET assembly exports one or more public methods that
accept and return data using MWArray objects.

Adding a type-safe interface to a MATLAB Compiler SDK assembly creates another set
of methods (with the same names) that accept and return native .NET types.

The figure Architecture of a Deployed Component with a Type-Safe Interface illustrates
the data paths between the .NET host application and the deployed MATLAB function.

7 Type-Safe Interfaces, WCF, and MEF

7-6

Architecture of a Deployed Component with a Type-Safe Interface

The MATLAB function addOne returns its input plus one.

Deploying addOne with a type-safe interface creates two .NET addOne methods:

 How Type-Safe Interfaces Work

7-7

• One that accepts and returns .NET double
• One that accepts and returns MWArray.

You may create multiple type-safe interface methods for a single MATLAB function.
Type-safe interface methods follow the standard .NET methods for overloading.

Notice that the type-safe methods co-exist with the MWArray methods. Your .NET
application may mix and match calls to either type of method, as appropriate.

You may find MWArray methods more efficient when passing large data values in loops
to one or more deployed functions. In such cases, creating an MWArray object allows you
to marshal the data only once whereas the type-safe interface marshals inputs on every
call.

7 Type-Safe Interfaces, WCF, and MEF

7-8

Generate the Type-Safe API with an Assembly

In this section...

“Use the Library Compiler App” on page 7-8
“Use the Command-Line Tools” on page 7-8

Use the Library Compiler App

The Library Compiler app generates the type-safe API, when you build your assembly, if
the correct options are selected.

1 Create a Library Compiler project.
2 Select .NET Assembly from the Type list.
3 Expand the Additional Runtime Settings section.
4 In the Type-Safe API section, do the following:

1 Select Enable Type-Safe API.
2 In the Interface assembly field, specify the location of the type-safe/WCF

interface assembly that you built.
3 Select the desired interface from the .NET interface drop-down box.

Tip If the drop-down is blank, the Library Compiler app may have been unable
to find any .NET interfaces in the assembly you selected.

4 Specify the name of the class you want the generated API to wrap, in the
Wrapped Class field.

Note: Leave the Namespace field blank.
5 Build the project by clicking the Package button.

Use the Command-Line Tools

To generate the type-safe API with your component using mcc, do the following:

1 Build the component by entering this command from MATLAB:

mcc -v -B 'dotnet:AddOneComp,Mechanism,3.5,private,local'

 addOne

 Generate the Type-Safe API with an Assembly

7-9

See the mcc reference page for details on the options specified.
2 Generate the type-safe API by entering this command from MATLAB:

ntswrap -c AddOneComp.Mechanism -i IAddOne -a IAddOne.dll

where:

• -c specifies the namespace-qualified name of the .NET assembly to wrap with
a type-safe API. If the assembly is scoped to a namespace, specify the full
namespace-qualified name (AddOneComp.Mechanism in the example). Because
no namespace is specified by ntswrap, the type-safe interface class appears in
the global namespace.

• -i specifies the name of the .NET interface that defines the type-safe API. The
interface name is usually prefixed by an I.

• -a specifies the absolute or relative path to the assembly containing the .NET
statically-typed interface, referenced by the -i switch.

Tip If the assembly containing the .NET interface IAddOne is not in the current
folder, specify the full path.

Caution Not all arguments are compatible with each other. See the ntswrap for
details on all command options.

7 Type-Safe Interfaces, WCF, and MEF

7-10

Implement a Type-Safe Interface

Implementing a type-safe interface usually requires the expertise of a .NET Developer
because it requires performing a number of medium-to-advanced programming tasks.

Tip Data objects that merely pass through either the target or MATLAB environments
may not need to be marshaled, particularly if they do not cross a process boundary.
Because marshaling is costly, only marshal on demand.

After you write and test your MATLAB code, develop a .NET interface that supports the
native types through the API in either C# or Visual Basic . In this example, the interface,
IAddOne, is written in C#.

Each method in the interface must exactly match a deployed MATLAB function.

The IAddOne interface specifies six overload of addOne:

using System.ServiceModel;

[ServiceContract]

public interface IAddOne

{

 [OperationContract(Name = "addOne_1")]

 int addOne(int x);

 [OperationContract(Name = "addOne_2")]

 void addOne(ref int y, int x);

 [OperationContract(Name = "addOne_3")]

 void addOne(int x, ref int y);

 [OperationContract(Name = "addOne_4")]

 System.Double addOne(System.Double x);

 [OperationContract(Name = "addOne_5")]

 System.Double[] addOne(System.Double[] x);

 [OperationContract(Name = "addOne_6")]

 System.Double[][] addOne(System.Double[][] x);

}

 Implement a Type-Safe Interface

7-11

As you can see, all methods have one input and one output (to match the MATLAB
addOne function), though the type and position of these parameters varies.

Data Conversion Rules for Using the Type-Safe Interface

• In a MATLAB function, declaration outputs appear before inputs. For example, in
the addOne function, the output y appears before the input x. This ordering is not
required for .NET interface functions. Inputs may appear before or after outputs or
the two may be mixed together.

• MATLAB Compiler SDK matches .NET interface functions to public MATLAB
functions by function name and argument count. In the addOne example, both
the .NET interface function and the MATLAB function must be named addOne and
both functions must have an equal number of arguments defined.

• The number and relative order of input and output arguments is critical.

• In evaluating parameter order, only the order of like parameters (inputs or
outputs) is considered, regardless of where they appear in the parameter list.

• A function in the interface may have fewer inputs than its corresponding MATLAB
function, but not more.

• Argument mapping occurs according to argument order rather than argument name.
• The function return value, if specified, counts as the first output.
• You must use out parameters for multiple outputs.

• Alternately, the ref parameter can be used for out. ref and out parameters are
synonymous.

• MATLAB does not support overloading of functions. Thus, all user-supplied overloads
of a function with a given name will map to a function generated by MATLAB
Compiler SDK.

See “.NET Types to MATLAB Types” on page 12-4 for complete guidelines in
managing data conversion with type-safe interfaces.

7 Type-Safe Interfaces, WCF, and MEF

7-12

Create Managed Extensibility Framework (MEF) Plug-Ins
In this section...

“What Is MEF?” on page 7-12
“MEF Prerequisites” on page 7-13
“Addition and Multiplication Applications with MEF” on page 7-13

What Is MEF?

The Managed Extensibility Framework (MEF) is a library for creating lightweight,
extensible applications.

Why Use MEF?

When working with .NET applications, it is typically necessary to specify which .NET
components should be loaded.

Keeping the application updated with hard-coded names and locations of .NET
components rapidly becomes a maintenance issue, especially if the updating is to be done
by an end user who may not be familiar with the technical aspects of the application.

MEF allows you to create a plug-in framework for your application or use an existing
framework with no required preconfiguration. It lets you avoid hard-coded dependencies
and reuse extensions within and across applications. Using MEF lets you avoid
recompiling applications, such as Microsoft Silverlight™, for which source code is
generally unavailable.

How Does MEF Work?

MEF provides a way for .NET components to be automatically discovered. It does this by
using MEF components called parts. Parts declaratively specify dependencies (imports)
and capabilities (exports) through metadata.

An MEF application consists of a host program that invokes functions defined in MEF
parts. MEF Parts that implement the same interface export functions with identical
names. These parts all participate in a common framework.

Each part implements an interface; often times, many parts implement the same
interface. Parts that implement the same interface export functions with identical names
that can be used over a variety of applications. MEF parts that implement the same
interface must have descriptive, unique metadata.

 Create Managed Extensibility Framework (MEF) Plug-Ins

7-13

The MEF host examines each part's metadata to determine which to load and invoke.

MEF parts are similar to MATLAB MEX files—each MEX file dynamically extends
MATLAB just as parts dynamically extend .NET components.

For More information About MEF

For up-to-date information regarding MEF, refer to the MSDN article “Managed
Extensibility Framework.”

MEF Prerequisites

Before running this example, keep the following in mind:

• You must be running Microsoft Visual Studio 2010 to create MEF applications.
If you can't use Visual Studio 2010, you can't run this example code, or any other
program that uses MEF. End Users do not need Microsoft Visual Studio 2010 to run
applications using MEF.

• You must be running at least Microsoft .NET Framework 4.0 to use the MEF feature.
• If you want to use MEF, the easiest way to do so is through the type-safe API.

Addition and Multiplication Applications with MEF

This MEF example application consists of an MEF host and two parts. The parts
implement a very simple interface (ICompute) which defines three overloads of a single
function (compute).

Each part performs simple arithmetic. In one part, the compute function adds one (1) to
its input. In the other part, compute multiplies its input by two (2). The MEF host loads
both parts and calls their compute functions twice.

To run this example, you’ll create a new solution containing three projects:

• MEF host
• Contract interface assembly
• Strongly-typed metadata attribute assembly

Implementing MEF requires the expertise of a .NET Developer because it requires
performing a number of advanced programming tasks.

http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx

7 Type-Safe Interfaces, WCF, and MEF

7-14

Where To Find Example Code for MEF

Selected example code can be found, along with some Microsoft Visual Studio projects, in
matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET. This code has
been tested to be compliant with Microsoft Visual Studio 2010 running on Microsoft .NET
Framework version 4.0 or higher.

To deploy an MEF-based component, follow this general workflow:

1. “Create an MEFHost Assembly” on page 7-14
2. “Create a Contract Interface Assembly” on page 7-15
3. “Create a Metadata Attribute Assembly” on page 7-16
4. “Add Contract and Attributes References to MEFHost” on page 7-17
5. “Compile Your Code in Microsoft Visual Studio” on page 7-17
6. “Write MATLAB Functions for MEF Parts” on page 7-17
7. “Create Metadata Files” on page 7-18
8. “Build .NET Components from MATLAB Functions and Metadata” on page 7-18
9. “Install MEF Parts” on page 7-19
10.“Run the MEF Host Program” on page 7-20

Create an MEFHost Assembly

1 Start Microsoft Visual Studio 2010.
2 Click File > New > Project.
3 In the Installed Templates pane, click Visual C# to filter the list of available

templates.
4 Select the Console Application template from the list.
5 In the Name field, enter MEFHost.
6 Click OK. Your project is created.
7 Replace the contents of the default Program.cs with the MEFHost.cs code. For

information about locating example code, see “Where to Find Example Code,” above.
8 In the Solution Explorer pane, select the project MEFHost and right-click. Select

Add Reference.
9 Navigate to the .NET tab and add a reference to

System.ComponentModel.Composition.
10 To prevent security errors, particularly if you have a non-local installation of

MATLAB, add an application configuration file to the project. This XML file

 Create Managed Extensibility Framework (MEF) Plug-Ins

7-15

instructs the MEF host to trust assemblies loaded from the network. If your project
does not include this configuration file, your application fails at runtime.

a Select the MEFHost project in the Solution Explorer pane and right-click.
b Click Add > New Item.
c From the list of available items, select Application Configuration File.
d Click Add. The configuration file is added to your project. Visual Studio

automatically names the file App.config.
e Replace the automatically-generated contents of App.config with this

configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <runtime>

 <loadFromRemoteSources enabled="true" />

 </runtime>

 </configuration>

You have finished building the first project, which builds the MEF host.

Next, you add a C# class library project for the MEF contract interface assembly.

Create a Contract Interface Assembly

1 in Visual Studio, click File > New > Project.
2 In the Installed Templates pane, click Visual C# to filter the list of available

templates.
3 Select the Class Library template from the list.
4 In the Name field, enter Contract.

Note: Ensure Add to solution is selected in the Solution drop-down box.
5 Click OK. Your project is created.
6 Replace the contents of the default Class1.cs with the following ICompute

interface code:

namespace Contract

{

 public interface ICompute

 {

7 Type-Safe Interfaces, WCF, and MEF

7-16

 double compute(double y);

 double[] compute(double[] y);

 double[,] compute(double[,] y);

 }

 }

You have finished building the second project, which builds the Contract Interface
Assembly.

Since strongly-typed metadata requires that you decorate MEF parts with a custom
metadata attribute, in the next step you add a C# class library project. This project
builds an attribute assembly to your MEFHost solution.

Create a Metadata Attribute Assembly

1 in Visual Studio, click File > New > Project.
2 In the Installed Templates pane, click Visual C# to filter the list of available

templates.
3 Select the Class Library template from the list.
4 In the Name field, enter Attribute.

Note: Ensure Add to solution is selected in the Solution drop-down box.
5 Click OK. Your project is created.
6 In the generated assembly code, change the namespace from Attribute to

MEFHost. Your namespace code should now look like the following:

7 In the MEFHost namespace, replace the contents of the default class Class1.cs
with the following code for the ComputationTypeAttribute class:

using System.ComponentModel.Composition;

[MetadataAttribute]

 Create Managed Extensibility Framework (MEF) Plug-Ins

7-17

[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]

public class ComputationTypeAttribute: ExportAttribute

{

 public ComputationTypeAttribute() :

 base(typeof(Contract.ICompute)) { }

 public Operation FunctionType{ get; set; }

 public double Operand { get; set; }

}

public enum Operation

{

 Plus,

 Times

}

8 Navigate to the .NET tab and add a reference to
System.ComponentModel.Composition.dll.

Add Contract and Attributes References to MEFHost

Before compiling your code in Microsoft Visual Studio:

1 In your MEFHost project, add references to the Contract and Attribute projects.
2 In your Attribute project, add a reference to the Contract project.

Compile Your Code in Microsoft Visual Studio

Build all your code by selecting the solution name MEFHost in the Solution Explorer
pane, right-clicking, and selecting Build Solution.

In doing so, you create the following binaries in MEFHost/bin/Debug:

• Attribute.dll

• Contract.dll

• MEFHost.exe

Write MATLAB Functions for MEF Parts

Create two MATLAB functions. Each must be named compute and stored in separate
folders, within your Microsoft Visual Studio project:

MEFHost/Multiply/compute.m

function y = compute(x)

7 Type-Safe Interfaces, WCF, and MEF

7-18

 y = x * 2;

MEFHost/Add/compute.m

function y = compute(x)

 y = x + 1;

Create Metadata Files

Create a metadata file for each MATLAB function.

1 For MEFHost/Add/compute.m:

a Name the metadata file MEFHost/Add/Add.metadata.
b In this file, enter the following metadata on one line:

[MEFHost.ComputationType(FunctionType=MEFHost.Operation.Plus, Operand=1)]

2 For MEFHost/Multiply/compute.m:

a Name the metadata file MEFHost/Multiply/Multiply.metadata.
b In this file, enter the following metadata on one line:

[MEFHost.ComputationType(FunctionType=MEFHost.Operation.Times, Operand=2)]

Build .NET Components from MATLAB Functions and Metadata

In this step, use the Library Compiler app to create .NET components from the
MATLAB functions and associated metadata.

Use the information in these tables to create both Addition and Multiplication
projects.

Note: Since you are deploying two functions, you need to run the Library Compiler
app twice, once using the Addition.prj information and once using the following
Multiplication.prj information.

Addition.prj

Project Name Addition

Class Name Add

File to compile MEFHost/Add/compute.m

 Create Managed Extensibility Framework (MEF) Plug-Ins

7-19

Multiplication.prj

Project Name Multiplication

Class Name Multiply

File to compile MEFHost/Multiply/compute.m

1 Click the Library Compiler app in the apps gallery.
2 Create your component, following the instructions in “Create a .NET Assembly”.
3

Modify project settings (> Settings) on the Type Safe API tab, for whatever
project you are building (Addition or Multiplication).

Project
Setting

Addition.prj Multiplication.prj

Enable Type
Safe API

Checked Checked

Interface
Assembly

MEFHost/bin/Debug/Contract.dll MEFHost/bin/Debug/Contract.dll

MEF metadata MEFHost/Add/Add.metadata MEFHost/Multiply/

Multiply.metadata

Attribute
Assembly

MEFHost/bin/Debug/

Attribute.dll

MEFHost/bin/Debug/Attribute.dll

Wrapped Class Add Multiply

4 Click the Package button.

Install MEF Parts

The two components you have built are MEF parts. You now need to move the generated
parts into the catalog directory so your application can find them:

1 Create a parts folder named MEFHost/Parts.
2 If necessary, modify the path argument that is passed to the DirectoryCatalog

constructor in your MEF host program. It must match the full path to the Parts
folder that you just created.

Note: If you change the path after building the MEF host a first time, you must
rebuild the MEF host again to pick up the new Parts path.

7 Type-Safe Interfaces, WCF, and MEF

7-20

3 Copy the two componentNative.dlls (Addition and Multiplication) and
AddICompute.dll and MultiplyICompute.dll assemblies from your into
MEFHost/Parts.

Note: You do not need to reference any of your MEF part assemblies in the MEF
host program. The host program uses a DirectoryCatalog, which means it
automatically searches for (and loads) parts that it finds in the specified folder.
You can add parts at any time, without having to recompile or relink the MEF host
application. You do not need to copy Addition.dll or Multiplication.dll to the
Parts directory.

Run the MEF Host Program

MATLAB-based MEF parts require the MATLAB Runtime, like all deployed MATLAB
code.

Before you run your MEF host, ensure that the correct version of the MATLAB Runtime
is available and that matlabroot/runtime/arch is on your path.

1 From a command window, run the following. This example assumes you are running
from c:\Work.

c:\Work> MEFHost\bin\Debug\MEFHost.exe

2 Verify you receive the following output:

8 Plus 1 = 9

9 Times 2 = 18

16 Plus 1 = 17

1.5707963267949 Times 2 = 3.14159265358979

Troubleshooting the MEF Host Program

Do you receive an exception indicating that a type initializer failed?

Ensure that you:

• Have matlabroot/runtime/arch defined to your MATLAB path.
• Have .NET security permissions set to allow applications to load assemblies from a

network.
• Rebuilt MEFHost after adding the application configuration file.

 Create Managed Extensibility Framework (MEF) Plug-Ins

7-21

Do you receive an exception indicating that MWArray.dll cannot be loaded commonly?

Ensure that you:

• Installed MWArray.dll in the Global Assembly Cache (GAC).
• Match the bit-depth of MWArray.dll to the bit depth of your MEF host application.

Often the default architecture for a C# console application is 32 bits. If you've
installed the 64-bit version of MWArray.dll into the GAC, you'll get this error. The
easiest correction for this error is to change your console application to 64-bit. To do
this in Microsoft Visual Studio, set Properties > Build > Platform Target to x64.

Do you receive an exception that a particular version of mclmcrrt cannot load?

Ensure that you:

• Do not have more than one instance of MATLAB on your path or installed on your
system.

• Have the correct version of MWArray.dll installed in the Global Assembly Cache
(GAC).

8

Web Deployment of Figures and
Images

• “Install WebFigureControl Into Microsoft Visual Studio Toolbox” on page 8-2
• “Quick Start Implementation of WebFigures” on page 8-3
• “Advanced Configuration of a WebFigure” on page 8-9
• “Upgrade Your WebFigures” on page 8-24
• “Troubleshoot WebFigures” on page 8-25
• “WebFigures Logging Levels” on page 8-27
• “Create and Modify a MATLAB Figure” on page 8-28
• “Work with Images” on page 8-31

8 Web Deployment of Figures and Images

8-2

Install WebFigureControl Into Microsoft Visual Studio Toolbox

1 If the toolbox is not displayed, open using View > Toolbox.
2 Select Tools > Choose Toolbox Items.
3 Click Browse....
4 Select matlabroot\toolbox\dotnetbuilder\bin

\arch\v2.0\WebFiguresService.dll.

If you are using the MATLAB Runtime, matlabroot is the location of the installed
MATLAB Runtime.

If you are using MATLAB Compiler SDK, matlabroot is the location of the
installed MATLAB Compiler SDK.

5 Click OK.

Once WebFiguresService.dll is added, you will see the following
WebFigureControl in the General section of the Microsoft Visual Studio toolbar:

 Quick Start Implementation of WebFigures

8-3

Quick Start Implementation of WebFigures

In this section...

“Overview” on page 8-3
“Assumptions About the Example” on page 8-3
“Procedure” on page 8-4

Overview

Using Quick Start, both the WebFigure service and the page that has the WebFigure
embedded on it reside on a single server. This configuration enables you to quickly drag
and drop the WebFigureControl on a web page.

Assumptions About the Example

To work with this example:

• Assume the following MATLAB function has been created:

function df = getKnot()

 f = figure('Visible','off'); %Create a figure.

 %Make sure it isn't visible.

 knot; %Put something into the figure.

8 Web Deployment of Figures and Images

8-4

 df = webfigure(f); %Give the figure to your function

 % and return the result.

 close(f); %Close the figure.

end

• Assume that the function getKnot has been deployed in a .NET assembly with a
namespace of MyComponent and a class of MyComponentclass.

• Assume the MATLAB Runtime has been installed. If not, refer to “Install MATLAB
Runtime”.

• If you are running on a system with 64-bit architecture, use the information in
“Advanced Configuration of a WebFigure” on page 8-9 to work with WebFigures
unless you are deploying a website which is 32-bit only and you have a 32-bit
MATLAB Runtime installed.

Procedure

To implement WebFigures in .NET for MATLAB Compiler SDK using the Quick Start
approach, do the following:

1 Start Microsoft Visual Studio.
2 Select File > New > Web Site to open.
3 Select one of the template options and click OK.

Caution Do not select Empty Web Site as it is not possible to create a WebFigure
using this option.

4 In your Visual Studio project, add a reference to matlabroot\toolbox
\dotnetbuilder\bin\arch\v2.0\WebFiguresService.dll.

If you are using the MATLAB Runtime, matlabroot is the location of the installed
MATLAB Runtime.

If you are using MATLAB Compiler SDK, matlabroot is the location of the
installed MATLAB Compiler SDK.

Note: If you are running on a system with 64-bit architecture, use the information in
“Advanced Configuration of a WebFigure” on page 8-9 to work with WebFigures
unless you are deploying a website which is 32-bit only and you have a 32-bit
MATLAB Runtime installed.

 Quick Start Implementation of WebFigures

8-5

5 “Install WebFigureControl Into Microsoft Visual Studio Toolbox” on page 8-2.
6 Drag the WebFigureControl from the toolbox to your web page. After dragging, the

web page displays the following default figure.

You can resize the control as you would any other .NET web control.
7 Switch to the Design view in Microsoft Visual Studio by selecting View > Designer.
8 Test the web page by “playing” it in Microsoft Visual Studio. Select Debug > Start

Debugging. The page should appear as follows.

8 Web Deployment of Figures and Images

8-6

9 Interact with the default figure on the page using your mouse. Click one of the three
control icons at the top of the figure to activate the desired control, select the desired
region of the figure you want to manipulate, then click and drag as appropriate. For
example, to zoom in on the figure, click the magnifying glass icon, then hover over
the figure.

10 Close the page as you would any other window, automatically exiting debug or “play”
mode.

11 The WebFigureService you created has been verified as functioning properly and
you can attach a custom WebFigure to the web page:

 Quick Start Implementation of WebFigures

8-7

a To enable return of the webfigure and to bind it to the webfigure control,
add a reference to MWArray to your project and a reference to the deployed
component you created earlier (in “Assumptions About the Example” on page
8-3). See “Common Integration Tasks” on page 2-2 for more information.

b In Microsoft Visual Studio, access the code for the web page by selecting View >
Code.

c In Microsoft Visual Studio, go to the Page_Load method, and add this code,
depending on if you are using the C# or Visual Basic language. Adding code to
the Page_Load method ensures it executes every time the web page loads.

Note: The following code snippets belong to the partial classes generated by
your .NET web page.

• C#:
using MyComponent;

using MathWorks.MATLAB.NET.WebFigures;

protected void Page_Load(object sender, EventArgs e)

{

 MyComponentclass myDeployedComponent =

 new MyComponentclass();

 WebFigureControl1.WebFigure =

 new WebFigure(myDeployedComponent.getKnot());

}

• Visual Basic:
Imports MyComponent

Imports MathWorks.MATLAB.NET.WebFigures

Protected Sub Page_Load(ByVal sender As Object,

 ByVal e As System.EventArgs)

 Handles Me.Load

 Dim myDeployedComponent As _

 New MyComponentclass()

 WebFigureControl1.WebFigure = _

 New WebFigure(myDeployedComponent.getKnot())

End Sub

Tip This code causes the deployed component to be reinitialized upon each
refresh of the page. A better implementation would involve initializing
the myDeployedComponent variable when the server starts up using a
Global.asax file, and then using that variable to get the WebFigure object.

8 Web Deployment of Figures and Images

8-8

For more information on Global.asax, see “Using Global Assembly Cache
(Global.asax) to Create WebFigures at Server Start-Up” on page 8-21.

Note: WebFigureControl stores the WebFigure object in the IIS session cache
for each individual user. If this is not the desired configuration, see “Advanced
Configuration of a WebFigure” on page 8-9 for information on creating a
custom configuration.

12 Replay the web page in Microsoft Visual Studio to confirm your WebFigure appears
as desired. It should look like this.

 Advanced Configuration of a WebFigure

8-9

Advanced Configuration of a WebFigure

In this section...

“Overview” on page 8-9
“Manually Installing WebFigureService” on page 8-11
“Retrieving Multiple WebFigures From a Component” on page 8-13
“Attaching a WebFigure” on page 8-15
“Setting Up WebFigureControl for Remote Invocation” on page 8-17
“Getting an Embeddable String That References a WebFigure Attached to a
WebFigureService” on page 8-19
“Improving Processing Times for JavaScript Using Minification” on page 8-21
“Using Global Assembly Cache (Global.asax) to Create WebFigures at Server Start-Up”
on page 8-21

Overview

The advanced configuration gives the experienced .NET programmer (possibly a business
service developer or front-end developer) flexibility and control in configuring system
architecture based on differing needs. For example, with the WebFigureService and
the web page on different servers, the administrator can optimally position the MATLAB
Runtime (for performance reasons) or place customer-sensitive customer data behind a
security firewall, if needed.

In summary, the advanced configuration offers more choices and adaptability for the
user more familiar with web environments and related technology, as illustrated by the
following graphics.

This section describes various ways to customize the basic WebFigures implementation
described in “Quick Start Implementation of WebFigures” on page 8-3.

8 Web Deployment of Figures and Images

8-10

 Advanced Configuration of a WebFigure

8-11

Manually Installing WebFigureService

WebFigureService is essentially a set of HTTP handlers that can service requests sent
to an instance of Internet Information Service (IIS). There are occasions when you may
want to install WebFigureService manually. For example:

• You want to implement the WebFigure controls programmatically and provide more
detailed customization.

• Your web environment was reconfigured from when you initially ran the “Quick Start
Implementation of WebFigures” on page 8-3.

8 Web Deployment of Figures and Images

8-12

• You want to implement WebFigures in a multiple server environment, as depicted in
the previous graphic.

• You want to understand more about how WebFigures for .NET works.

When you dragged the GUI control for WebFigures onto the web page in “Quick
Start Implementation of WebFigures” on page 8-3, you automatically installed
WebFigureService in the web application file web.config.

To install WebFigureService manually:

1 Add a reference to WebFiguresService.dll from the folder
matlabroot\toolbox\dotnetbuilder\bin\arch\v2.0 to the project.

If you are using MATLAB Runtime, matlabroot is the location of the installed
MATLAB Runtime. If you are using MATLAB, matlabroot is the location of the
MATLAB installation.

2 Add the following code to web.config. This code tells IIS to send any requests that
come to the __WebFigures.ashx file to the WebFigureHttpHandlerFactory in
the WebFiguresService.dll:
<system.webServer>

 <handlers>

 <add name="WebFigures" path="__WebFigures.ashx"

 verb="GET"

 type="MathWorks.MATLAB.NET.WebFigures.

 Service.Handlers.Factories.

 Http.WebFigureHttpHandlerFactory"/>

 </handlers>

</system.webServer>

Note: The value for the type= statement in the code must be entered on one
continuous line.

3 To use the 64-bit version of IIS, add the following to web.config:
<appSettings>

 <add key="PageInspector:ServerCodeMappingSupport" value="Disabled" />

</appSettings>

<system.webServer>

 <validation validateIntegratedModeConfiguration="false" />

 <handlers>

 ...

 </handlers>

</system.webServer>

<compilation debug="true" targetFramework="4.0">

 <assemblies>

 Advanced Configuration of a WebFigure

8-13

 <add assembly="WebFiguresService,

 Version=2.14.0.0,

 Culture=neutral,

 PublicKeyToken=E1D84A0DA19DB86F"/>

 <remove assembly="Microsoft.VisualStudio.Web.PageInspector.Loader,

 Version=1.0.0.0,

 Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a"/>

 </assemblies>

</compilation>

Note: The value for the assembly= statements in the code must be entered on one
continuous line.

Retrieving Multiple WebFigures From a Component

If your deployed component returns several WebFigures, then you have to make
additional modifications to your code.

MATLAB sees a WebFigure the same way it see a MWStructArray. WebFigure
constructors accept a WebFigure, an MWArray, or an MWStructArray as inputs.

Use the following examples as guides, depending on what type of functions you are
working with.

Working with Functions that Return a Single WebFigure as the Function's Only Output

C#

using MyComponent;

using MathWorks.MATLAB.NET.WebFigures;

public class

{

 protected void Page_Load(object sender, EventArgs e)

 {

 MyComponentclass myDeployedComponent =

 new MyComponentclass();

 WebFigureControl1.WebFigure =

 new WebFigure(myDeployedComponent.getKnot());

 }

}

8 Web Deployment of Figures and Images

8-14

Visual Basic

Imports MyComponent

Imports MathWorks.MATLAB.NET.WebFigures

Class

 Protected Sub Page_Load(ByVal sender As Object,

 ByVal e As System.EventArgs)

 Handles Me.Load

 Dim myDeployedComponent As _

 New MyComponentclass()

 WebFigureControl1.WebFigure = _

 New WebFigure(myDeployedComponent.getKnot())

 End Sub

End Class

Working With Functions That Return Multiple WebFigures In an Array as the Output

C#

using MyComponent;

using MathWorks.MATLAB.NET.WebFigures;

public class

{

 protected void Page_Load(object sender, EventArgs e)

 {

 MyComponentclass myDeployedComponent =

 new MyComponentclass();

 //If the function returns an array with 4 WebFigures

 // in it and takes in no inputs.

 MWArray[] outputs = myDeployedComponent.getKnot(4);

 WebFigureControl1.WebFigure =

 new WebFigure(outputs[0]);

 WebFigureControl2.WebFigure =

 new WebFigure(outputs[1]);

 WebFigureControl3.WebFigure =

 new WebFigure(outputs[2]);

 WebFigureControl4.WebFigure =

 Advanced Configuration of a WebFigure

8-15

 new WebFigure(outputs[3]);

 }

}

Visual Basic

Imports MyComponent

Imports MathWorks.MATLAB.NET.WebFigures

Class

 Protected Sub Page_Load(ByVal sender As Object,

 ByVal e As System.EventArgs)

 Handles Me.Load

 Dim myDeployedComponent As _

 New MyComponentclass()

 Dim outputs as MWArray() = _

 myDeployedComponent.getKnot(4)

 WebFigureControl1.WebFigure = _

 New WebFigure(outputs(0))

 WebFigureControl2.WebFigure = _

 New WebFigure(outputs(1))

 WebFigureControl3.WebFigure = _

 New WebFigure(outputs(2))

 WebFigureControl4.WebFigure = _

 New WebFigure(outputs(3))

 End Sub

End Class

Attaching a WebFigure

After you have manually installed WebFigureService, the server where it is installed
is ready to receive requests for any WebFigure information. In the Quick Start,
WebFigureService uses the session cache built into IIS to retrieve a WebFigure, per
user, and display it. Since a WebFigureControl isn't being used in this case, you need
to manually set up the WebFigureService and attach the WebFigure. Add the code
supplied in this section to attach a WebFigure of your choosing.

This method of setting up WebFigureService and attaching the figure manually is very
useful in the following situations:

8 Web Deployment of Figures and Images

8-16

• You do not want front-end servers to have WebFigureService running on them for
performance reasons.

• You are displaying a WebFigure that does not change based on the current user
or session. When multiple users are sharing the same WebFigure, which is very
common, it is much more efficient to store a single WebFigure in the Application
or Cache state, rather than issuing all users their own figure.

There are a number of ways to attach a WebFigure to a scope, depending on state (note
that these terms follow standard industry definitions and usage):

State Definition

Session The method used by WebFigureControl by default, which is tied to
a specific user session and cannot be shared across sessions. If you use
IIS session sharing capabilities, you can use this across servers in a
cluster.

Application Available for any user of your application, per application lifetime.
IIS will not propagate this across servers in a cluster, but if each
server attaches the data to this cache once, all users can access it very
efficiently.

Cache Similar to Application, but with more potential settings. You
can assign “time to live” and other settings found in Microsoft
documentation.

Note: In this type of configuration, it is typical to have the following code executed once
in the Global.asax server startup block. For more information on Global.asax, see
“Using Global Assembly Cache (Global.asax) to Create WebFigures at Server Start-Up”
on page 8-21.

Add the following code to manually attach the WebFigure, based on whether you are
using C# or Visual Basic:

• C#:

MyComponentclass myDeployedComponent =

 new MyComponentclass();

Session["SessionStateWebFigure"] =

 Advanced Configuration of a WebFigure

8-17

 new WebFigure(myDeployedComponent.getKnot());

Or

Application["ApplicationStateWebFigure"] =

 new WebFigure(myDeployedComponent.getKnot());

Or

Cache["CacheStateWebFigure"] =

 new WebFigure(myDeployedComponent.getKnot());

• Visual Basic:

Dim myDeployedComponent As _

 New MyComponentclass()

Session("SessionStateWebFigure") = _

 New WebFigure(myDeployedComponent.getKnot())

Or

Application("ApplicationStateWebFigure") = _

 New WebFigure(myDeployedComponent.getKnot())

Or

Cache("CacheStateWebFigure") = _

 New WebFigure(myDeployedComponent.getKnot())

Setting Up WebFigureControl for Remote Invocation

After you drag a WebFigureControl onto a page, as in “Quick Start Implementation of
WebFigures” on page 8-3, you either assign the WebFigure property or set the Remote
Invocation properties, depending on how the figure will be used.

The procedure in this section allows you to tell WebFigureControl to reference a
WebFigure that has been manually attached to a WebFigureService on a remote
server or cluster of remote servers. This allows you to use the custom control, yet
the resources of WebFigureService are running on a remote server to maximize
performance.

1 Drag a WebFigureControl from the toolbox onto the page, if you haven't done so
already in “Quick Start Implementation of WebFigures” on page 8-3.

8 Web Deployment of Figures and Images

8-18

Note: If you are running on a system with 64-bit architecture, use the information in
“Advanced Configuration of a WebFigure” on page 8-9 to work with WebFigures
unless you are deploying a website which is 32-bit only and you have a 32-bit
MATLAB Runtime installed.

2 In the Properties pane for this control, set the Name and Scope attributes as
follows:

• Name ApplicationStateWebFigure
• Scope application

Caution Always attempt to define the scope. If you leave Scope blank, the
Session state, the Application state, and then the Cache state (in this
order) will be checked. If there are WebFigures in any of these states with the
same name, there can be potential for conflict and confusion. The first figure with
the same name will be used by default.

The pane should now look like this:

 Advanced Configuration of a WebFigure

8-19

Note: If you don’t provide a root (usually the location of the load balancer), it is
assumed to be the server where the page is executing.

Getting an Embeddable String That References a WebFigure Attached to
a WebFigureService

From any server, you can use the GetHTMLEmbedString API to get a string that
can be embedded onto a page, if you followed the procedures “Manually Installing
WebFigureService” on page 8-11 in “Attaching a WebFigure” on page 8-15.

To do so, use the following optional parameters and code snippets (or something similar,
depending on your implementation). For information on the differences between session,
application, and cache scopes, see “Attaching a WebFigure” on page 8-15.

GetHTMLEmbedString API Parameters

Parameter If not specified...

ID Default MATLAB WebFigure (the MATLAB
membrane logo).

8 Web Deployment of Figures and Images

8-20

Parameter If not specified...

Root The relative path to the current web page will be
used.

WebFigureAttachType Will search through Session state, then
Application state, then Cache state.

Height Default height will be 420.
Width Default width will be 560.

Referencing a WebFigure Attached to the Local Server

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String localEmbedString =

 WebFigureServiceUtility.GetHTMLEmbedString(

 "SessionStateWebFigure",

 WebFigureAttachType.session,

 300,

 300);

Response.Write(localEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

Dim localEmbedString As String = _

 WebFigureServiceUtility.GetHTMLEmbedString(_

 "SessionStateWebFigure", _

 WebFigureAttachType.session, _

 300, _

 300)

Response.Write(localEmbedString)

Referencing a WebFigure Attached to a Remote Server

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String remoteEmbedString =

 Advanced Configuration of a WebFigure

8-21

 WebFigureServiceUtility.GetHTMLEmbedString(

 "SessionStateWebFigure",

 "http://localhost:20309/WebSite7/",

 WebFigureAttachType.session,

 300,

 300);

Response.Write(remoteEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

Dim localEmbedString As String = _

 WebFigureServiceUtility.GetHTMLEmbedString(_

 "SessionStateWebFigure", _

 "http://localhost:20309/WebSite7/", _

 WebFigureAttachType.session, _

 300, _

 300)

Response.Write(localEmbedString)

Improving Processing Times for JavaScript Using Minification

This application uses JavaScript to perform most of its AJAX functionality. Because
JavaScript runs in the client browser, it must all be streamed to the client computer
before it can execute. To improve this process, you use a standard JavaScript
minification algorithm to remove comments and white space in the code. This
feature is enabled by default. To disable it, create an environment variable called
mathworks.webfigures.disableJSMin and set its value to true.

Using Global Assembly Cache (Global.asax) to Create WebFigures at
Server Start-Up

In ASP.NET there is a special type of object you can add called a Global Assembly Cache,
also known by the name Global.asax.

Global.asax classes have methods that are called at various times in the IIS life
cycle, such as Application_Start and Application_End. These methods get called
respectively when the server is first started and when the server is being shut down.

8 Web Deployment of Figures and Images

8-22

As seen in “Quick Start Implementation of WebFigures” on page 8-3, the default behavior
for a WebFigureControl is to store data in the Session cache on the server. In other
words, each user that accesses a page using a WebFigureControl has an individual
instance of that WebFigure in the cache. This is useful if each user gets specific data,
but resources can be wasted in situations where all users are accessing the same
WebFigures.

Therefore, in order to maximize available resources, it makes sense to move WebFigure
code for commonly used figures into the Application_Start method of the
Global.asax. In the following example, code written in the web page initialization
section of “Attaching a WebFigure” on page 8-15 is moved into a Global.asax
method as follows:

C#

void Application_Start(object sender, EventArgs e)

{

 // Code that runs on application startup

 MyComponentclass myDeployedComponent =

 new MyComponentclass();

 Application["ApplicationStateWebFigure"] =

 new WebFigure(myDeployedComponent.getKnot());

 //Or

 Cache["CacheStateWebFigure"] =

 new WebFigure(myDeployedComponent.getKnot());

}

Visual Basic

Sub Application_Start

 (ByVal sender As Object, ByVal e As EventArgs)

 ' Code that runs on application startup

 Dim myDeployedComponent As _

 New MyComponentclass()

 Application("ApplicationStateWebFigure") = _

 New WebFigure(myDeployedComponent.getKnot())

 'Or

 Advanced Configuration of a WebFigure

8-23

 Cache("CacheStateWebFigure") = _

 New WebFigure(myDeployedComponent.getKnot())

 End Sub

Note: In this scenario, notice a WebFigure is not bound to the Session, since you
usually need to share the WebFigures across different sessions. However, it may be
useful to use the Cache option, since it provides a way to specify Time To Live so the
WebFigure can be regenerated and reattached at a specific time interval.

Once the figure is attached to a cache, reference it either from the WebFigureControl
as seen in “Setting Up WebFigureControl for Remote Invocation” on page 8-17 or
directly from the web page as in “Getting an Embeddable String That References a
WebFigure Attached to a WebFigureService” on page 8-19.

8 Web Deployment of Figures and Images

8-24

Upgrade Your WebFigures

If you want to upgrade your version of MATLAB Compiler SDK and retain WebFigures
created with a prior product release, do the following:

1 Delete the WebFigureControl icon from the toolbox.
2 Delete any WebFigures from your page.
3 Upgrade your version of MATLAB Compiler SDK.
4 Add the new WebFigureControl icon to the toolbox.
5 Drag new WebFigures on to your page.

 Troubleshoot WebFigures

8-25

Troubleshoot WebFigures

Use the following section to diagnose error conditions encountered when implementing
WebFigures for the .NET feature.

In WebFigures, there are two ways to display errors: by turning debug on for the site,
and by turning it off. When debug is turned on, some error messages contain links to
HTML pages that describe how the problem might be solved. When it is turned off, only
the error message is shown.

Common causes of errors include:

• MATLAB Runtime is not installed or is the wrong version (meaning MWArray.dll is
the wrong version or WebFigureService.dll is the wrong version).

• Deployed component is a different version than that compatible with the MATLAB
Runtime.

• Incorrect framework is being used (only .NET 2.0 Framework is supported as of
R2008b for WebFigures).

• WebFigureService is not installed. See “Manually Installing WebFigureService” on
page 8-11.

• WebFigure is not attached to WebFigureService. See “Attaching a WebFigure” on
page 8-15.

• Remote root URL is pointing to an invalid server.

Common errors and their diagnosis follow.

Error Diagnosis

Issue Displaying Image. Please Refresh. Most often, this message is generated
when the session state has expired and the
WebFigure has been deleted. Refreshing
the session will reestablish the WebFigure
in cache and the figure will reappear.

No WebFigure Can Be Found with the
Name Specified

The WebFigure isn’t attached correctly.
See “Attaching a WebFigure” on page 8-15.

WebFigureService Has Encountered an
Unrecoverable Error

A critical error has occurred but the exact
cause is unknown. Typically this is due to
some type of system configuration issue
that could not be anticipated.

8 Web Deployment of Figures and Images

8-26

Error Diagnosis

WebFigureService Not Functioning The WebFigureService
httpHanderFactory could not be found
on the server specified. See “Manually
Installing WebFigureService” on page 8-11.

Could not find a part of the path pathname The logging environment variable is set to
a folder that does not exist.

 WebFigures Logging Levels

8-27

WebFigures Logging Levels

There are several logging levels that can be used to diagnose problems with WebFigures.

Logging Level Uses

Severe Unrecoverable errors and exceptions
Warning Recoverable errors that might occur
Information Informative messages
Finer For monitoring application flow (when different parts of an

application are executed)

You can manually set the log level by setting an environment variable called
mathworks.webfigures.logLevel to one of the above strings.

If you set this environment variable to something other than the above strings or it is not
set, it defaults to a level of Warning or Severe only.

By default, all exceptions are shown within the WebFigure control on the web page when
debug mode is on for the site.

If you want more detailed logging information, or log information when debug is not
on, set an environment variable called mathworks.webfigures.logLocation
to the location where the log file is written. The log file is named
yourwebappnameWFSLog.txt.

8 Web Deployment of Figures and Images

8-28

Create and Modify a MATLAB Figure

In this section...

“Preparing a MATLAB Figure for Export” on page 8-28
“Changing the Figure (Optional)” on page 8-28
“Exporting the Figure” on page 8-29
“Cleaning Up the Figure Window” on page 8-29
“Modify and Export Figure Data” on page 8-29

Preparing a MATLAB Figure for Export

1 Create a figure window. For example:

h = figure;

2 Add graphics to the figure. For example:

surf(peaks);

Changing the Figure (Optional)

Optionally, you can change the figure numerous ways. For example:

Alter Visibility

 set(h, 'Visible', 'off');

Change Background Color

 set(h, 'Color', [.8,.9,1]);

Alter Orientation and Size

width=500;

height=500;

rotation=30;

elevation=30;

set(h, 'Position', [0, 0, width, height]);

view([rotation, elevation]);

 Create and Modify a MATLAB Figure

8-29

Exporting the Figure

Export the contents of the figure in one of two ways:

WebFigure

To export as a WebFigure:

returnFigure = webfigure(h);

Image Data

To export image data, for example:

imgform = 'png';

returnByteArray = figToImStream(`figHandle', h, ...

 `imageFormat', imgform, ...

 `outputType', `uint8');

Cleaning Up the Figure Window

To close the figure window:

close(h);

Modify and Export Figure Data

WebFigure

 function returnFigure = getWebFigure()

 h = figure;

 set(h, 'Visible', 'off');

 surf(peaks);

 set(h, 'Color', [.8,.9,1]);

 returnFigure = webfigure(h);

 close(h);

Image Data

function returnByteArray = getImageDataOrientation(height,

 width, elevation, rotation, imageFormat)

h = figure;

set(h, 'Visible', 'off');

8 Web Deployment of Figures and Images

8-30

surf(peaks);

set(h, 'Color', [.8,.9,1]);

set(h, 'Position', [0, 0, width, height]);

view([rotation, elevation]);

returnByteArray = figToImStream(`figHandle', h, ...

 `imageFormat', imageFormat, ...

 `outputType', `uint8');

close(h);

function returnByteArray = getImageDataOrientation(height,

 width, elevation, rotation, imageFormat)

h = figure;

set(h, 'Visible', 'off');

surf(peaks);

set(h, 'Color', [.8,.9,1]);

set(h, 'Position', [0, 0, width, height]);

view([rotation, elevation]);

returnByteArray = figToImStream(`figHandle', h, ...

 `imageFormat', imageFormat, ...

 `outputType', `int8');

close(h);

 Work with Images

8-31

Work with Images

In this section...

“Getting Encoded Image Bytes from an Image in a Component” on page 8-31
“Getting a Buffered Image in a Component” on page 8-31
“Getting Image Data from a WebFigure” on page 8-32

Getting Encoded Image Bytes from an Image in a Component

public byte[] getByteArrayFromDeployedComponent()

{

 MWArray width = 500;

 MWArray height = 500;

 MWArray rotation = 30;

 MWArray elevation = 30;

 MWArray imageFormat = "png";

 MWNumericArray result =

 (MWNumericArray)deployment.getImageDataOrientation(

 height,

 width,

 elevation,

 rotation,

 imageFormat);

 return (byte[])result.ToVector(MWArrayComponent.Real);

}

Getting a Buffered Image in a Component

public byte[] getByteArrayFromDeployedComponent()

{

 MWArray width = 500;

 MWArray height = 500;

 MWArray rotation = 30;

 MWArray elevation = 30;

 MWArray imageFormat = "png";

 MWNumericArray result =

 (MWNumericArray)deployment.getImageDataOrientation(

 height,

8 Web Deployment of Figures and Images

8-32

 width,

 elevation,

 rotation,

 imageFormat);

 return (byte[])result.ToVector(MWArrayComponent.Real);

}

public Image getImageFromDeployedComponent()

{

 byte[] byteArray = getByteArrayFromDeployedComponent();

 MemoryStream ms = new MemoryStream(myByteArray, 0,

 myByteArray.Length);

 ms.Write(myByteArray, 0, myByteArray.Length);

 return Image.FromStream(ms, true);

}

Getting Image Data from a WebFigure

The following example shows how to get image data from a WebFigure object. It also
shows how to specify the image type and the orientation of the image.

WebFigure figure =

 new WebFigure(deployment.getWebFigure());

WebFigureRenderer renderer =

 new WebFigureRenderer();

//Creates a parameter object that can be changed

// to represent a specific WebFigure and its orientation.

//If you dont set any values it uses the defaults for that

// figure (what they were when the figure was created in M).

WebFigureRenderParameters param =

 new WebFigureRenderParameters(figure);

param.Rotation = 30;

param.Elevation = 30;

param.Width = 500;

param.Height = 500;

//If you need a byte array that can be streamed out

// of a web page you can use this:

byte[] outputImageAsBytes =

 renderer.RenderToEncodedBytes(param);

 Work with Images

8-33

//If you need a .NET Image (can't be used on the web)

// you can use this code:

Image outputImageAsImage =

 renderer.RenderToImage(param);

9

Windows Communications
Foundation Based Components

• “What Is Windows Communications Foundation?” on page 9-2
• “Create Windows Communications Foundation Based Components” on page 9-3

9 Windows Communications Foundation Based Components

9-2

What Is Windows Communications Foundation?

Windows Communication Foundation (WCF) is an application programming interface
in the .NET Framework for building service-oriented applications. Servers implement
multiple services that can be consumed by multiple clients. Services are loosely coupled
to each other.

Services typically have a WSDL interface (Web Services Description Language), which
any WCF client can use to consume the service. A WCF client connects to a service via
an endpoint. Each service exposes itself via one or more endpoints. An endpoint has an
address, which is a URL specifying where the endpoint can be accessed, and binding
properties that specify how the data will be transferred.

What’s the Difference Between WCF and .NET Remoting?

WCF is an end-to-end web service. Many of the advantages afforded by .NET Remoting
—a wide selection of protocol interoperability, for instance—can be achieved with a
WCF interface, in addition to having access to a richer, more flexible set of native data
types. .NET Remoting can only support native objects.

WCF offers more robust choices in most every aspect of web-based development, even
implementation of a Java client, for example.

For More information About WCF

For up-to-date information regarding WCF, refer to the MSDN article “Windows
Communication Foundation.”

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

 Create Windows Communications Foundation Based Components

9-3

Create Windows Communications Foundation Based Components

In this section...

“Before Running the Example” on page 9-3
“Deploying a WCF-Based Component” on page 9-3

Before Running the Example

Before running this example, keep the following in mind:

• You must be running at least Microsoft .NET Framework 3.5 to use the WCF feature.
• If you want to use WCF, the easiest way to do so is through the type-safe API.
• WCF and .NET Remoting are not compatible in the same deployment project or

component.
• The example in this chapter requires both client and server to use message sizes

larger than the WCF defaults. For information about changing the default message
size, see the MSDN article regarding setting of the maxreceivedmessagesize property.

Deploying a WCF-Based Component

Deploying a WCF-based component requires the expertise of a .NET Developer because it
requires performing a number of advanced programming tasks.

To deploy a WCF-based component, follow this general workflow:

1. “Write and Test Your MATLAB Code” on page 9-4
2. “Develop Your WCF Interface” on page 9-4
3. “Build Your Component and Generate Your Type-Safe API” on page 9-5
4. “Develop Server Program Using the WCF Interface” on page 9-7
5. “Compile the Server Program” on page 9-10
6. “Run the Server Program” on page 9-10
7. “Generate Proxy Code for Clients” on page 9-11
8. “Compile the Client Program” on page 9-12
9. “Run the Client Program” on page 9-14

http://msdn.microsoft.com/en-us/library/system.servicemodel.basichttpbinding.maxreceivedmessagesize.aspx

9 Windows Communications Foundation Based Components

9-4

Write and Test Your MATLAB Code

Create your MATLAB program and then test the code before implementing a type-safe
interface. The functions in your MATLAB program must match the declarations in your
native .NET interface.

In the following example, the deployable MATLAB code contains one exported function,
addOne. The addOne function adds the value one (1) to the input received. The input
must be numeric, either a scalar or a matrix of single or multiple dimensions.

function y = addOne(x)

% ADDONE Add one to numeric input. Input must be numeric.

 if ~isnumeric(x)

 error('Input must be numeric. Input was %s.', class(x));

 end

 y = x + 1;

end

Note: addOne must perform run-time type checking to ensure valid input.

Develop Your WCF Interface

After you write and test your MATLAB code, develop an interface in either C# or Visual
Basic that supports the native types through the API.

Define IAddOne Overloads

See “Implement a Type-Safe Interface” on page 7-10 for complete rules on defining
interface overloads.

In addition, when using WCF, your overloaded functions must have unique names.

Note that in the WCF implementation of addOne, you decorate the methods with the
OperationContract property. You give each method a unique operation name, which
you specify with the Name property of OperationContract, as in this example:

using System.ServiceModel;

[ServiceContract]

 Create Windows Communications Foundation Based Components

9-5

public interface IAddOne

{

 [OperationContract(Name = "addOne_1")]

 int addOne(int x);

 [OperationContract(Name = "addOne_2")]

 void addOne(ref int y, int x);

 [OperationContract(Name = "addOne_3")]

 void addOne(int x, ref int y);

 [OperationContract(Name = "addOne_4")]

 System.Double addOne(System.Double x);

 [OperationContract(Name = "addOne_5")]

 System.Double[] addOne(System.Double[] x);

 [OperationContract(Name = "addOne_6")]

 System.Double[][] addOne(System.Double[][] x);

}

As you can see, the IAddOne interface specifies six overloads of the addOne function.
Also, notice that all have one input and one output (to match the MATLAB addOne
function), though the type and position of these parameters varies.

For additional code snippets and data conversion rules regarding type-safe interfaces, see
“Implement a Type-Safe Interface” on page 7-10.

For more information on WCF contracts and properties, see the Microsoft WCF website.

Compile IAddOne into an Assembly

Compile IAddOne.cs into an assembly using Microsoft Visual Studio.

Note: This example assumes your assembly contains only IAddOne. Realistically, it is
more likely that IAddOne will already be part of a compiled assembly. The assembly may
be complete even before the MATLAB function is written.

Build Your Component and Generate Your Type-Safe API

Use either the Library Compiler app or the deployment command line tools to generate
the type-safe API.

http://msdn.microsoft.com/en-us/netframework/aa663324

9 Windows Communications Foundation Based Components

9-6

Using the Library Compiler

The Library Compiler app generates the type-safe API, when you build your component,
if the correct options are selected.

1 Create your project.

When defining your project, use these values:

Project Name AddOneComp

Class Name Mechanism

File to compile addOne

Note: Do not click the Package button at this time.
2 Expand the Additional Runtime Settings section.
3 On the Type-Safe API tab, do the following:

a Select Enable Type-Safe API.
b In the Interface assembly field, specify the location of the type-safe/WCF

interface assembly that you built.
c Select IAddOne from the .NET interface drop-down box. The interface name is

usually prefixed by an I.

Tip If the drop-down is blank, the Library Compiler app may have been unable
to find any .NET interfaces in the assembly you selected. Select another
assembly.

d Specify Mechanism, as the class name you want the generated API to wrap, in
the Wrapped Class field.

Note: Leave the Namespace field blank.
4 Build the project as usual by clicking the Package button.

Using the Deployment Command-Line Tools

To generate the type-safe API with your component build (compilation) using mcc, do the
following:

 Create Windows Communications Foundation Based Components

9-7

1 Build the component by entering this command from MATLAB:

mcc -v -B 'dotnet:AddOneComp,Mechanism,3.5,private,local'

 addOne

See the mcc reference page in this for details on the options specified.
2 Generate the type-safe API by entering this command from MATLAB:

ntswrap -c AddOneComp.Mechanism -i IAddOne -a IAddOne.dll

where:

• -c specifies the namespace-qualified name of the MATLAB Compiler SDK
assembly to wrap with a type-safe API. If the component is scoped to a
namespace, specify the full namespace-qualified name (AddOneComp.Mechanism
in the example). Because no namespace is specified by ntswrap, the type-safe
interface class appears in the global namespace.

• -i specifies the name of the .NET interface that defines the type-safe API. The
interface name is usually prefixed by an I.

• -a specifies the absolute or relative path to the assembly containing the .NET
statically-typed interface, referenced by the -i switch.

Tip If the assembly containing the .NET interface IAddOne is not in the current
folder, specify the full path.

Caution Not all arguments are compatible with each other. See the ntswrap
reference page for details on all command options.

Develop Server Program Using the WCF Interface

You have now built your component and generated a WCF-compliant type-safe API.

Next, develop a server program that provides access (via the WCFServiceContract) to
the overloads of addOne defined by the WCF IAddOne interface. The program references
an App.config XML configuration file.

The WCF server program loads the WCF-based addOne.Mechanism component and
makes it available to SOAP clients via the type-safe mechanismIAddOne interface.

9 Windows Communications Foundation Based Components

9-8

About Jagged Array Processing When writing your interface, you will be coding to handle
jagged arrays, as opposed to rectangular arrays. For more information about jagged
arrays, see “Jagged Array Processing” on page 2-22 in this documentation.

WCF Server Program

using System;

using System.Text;

using System.ServiceModel;

namespace AddMasterServer

{

 class AddMasterServer

 {

 static void Main(string[] args)

 {

 try

 {

 using (ServiceHost host =

 new ServiceHost(typeof(MechanismIAddOne)))

 {

 host.Open();

 Console.WriteLine("

 AddMaster Server is up running......");

 Console.WriteLine("

 Press any key to close the service.");

 Console.ReadLine();

 Console.WriteLine("Closing service...");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 }

 }

}

App.config XML file

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 Create Windows Communications Foundation Based Components

9-9

 <system.web>

 <compilation debug="true" />

 </system.web>

 <system.serviceModel>

 <services>

 <service behaviorConfiguration=

 "AddMaster.ServiceBehavior" name="MechanismIAddOne">

 <endpoint

 address=""

 binding="wsHttpBinding"

 contract="IAddOne"

 name="HttpBinding" />

 <endpoint

 address=""

 binding="netTcpBinding"

 contract="IAddOne"

 name="netTcpBinding" />

 <endpoint

 address="mex"

 binding="mexHttpBinding"

 contract="IMetadataExchange"

 name="MexHtppBinding"/>

 <endpoint

 address="mex"

 binding="mexTcpBinding"

 contract="IMetadataExchange"

 name="MexTCPBinding"/>

 <host>

 <baseAddresses>

 <add baseAddress=

 "http://localhost:8001/AddMaster/" />

 <add baseAddress=

 "net.tcp://localhost:8002/AddMaster/" />

 </baseAddresses>

 </host>

 </service>

 </services>

 <behaviors>

 <serviceBehaviors>

 <behavior name="AddMaster.ServiceBehavior">

 <serviceMetadata httpGetEnabled="True" httpGetUrl=

 "http://localhost:8001/AddMaster/mex" />

 <!-- To receive exception details in faults for

 <!-- debugging purposes,

9 Windows Communications Foundation Based Components

9-10

 set the value below to true. Set to false before

 deployment to avoid disclosing exception

 information -->

 <serviceDebug includeExceptionDetailInFaults="True" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.serviceModel>

</configuration>

Compile the Server Program

Compile the server program using Microsoft Visual Studio by doing the following:

1 Create a Microsoft Visual Studio project named AddMaster.
2 Add AddMasterServer.cs and App.config (the configuration file created in the

previous step) to your project.
3 Add references in the project to the following files.

This reference: Defines:

IAddOne.dll The .NET native type interface IAddOne
MechanismIAddOne.dll The generated type-safe API
AddOneCompNative.dll The generated assembly

Note: Unlike other .NET deployment scenarios, you do not need to reference
MWArray.dll in the server program source code. The MWArray data types are
hidden behind the type-safe API in MechanismIAddOne.

4 If you are not already referencing System.ServiceModel, add it to your Visual
Studio project.

5 Compile the program with Microsoft Visual Studio.

Run the Server Program

Run the server program from a command line.

The output should look similar to the following.

AddMaster Server is up running......

 Create Windows Communications Foundation Based Components

9-11

Press any key to close the service.

Pressing a key results in the following.

Closing service....

Generate Proxy Code for Clients

Configure your clients to communicate with the server by running the automatic
proxy generation tool, svcutil.exe. Most versions of Microsoft Visual Studio can
automatically generate client proxy code from server metadata.

Caution Before you generate your client proxy code using this step, the server must be
available and running. Otherwise, the client will not find the server.

1 Create a client project in Microsoft Visual Studio.
2 Add references by using either of these two methods. See “Port Reservations

and Using localhost 8001” on page 9-12 for information about modifying port
configurations.

Method 1 Method 2

a In the Solutions Explorer pane,
right-click References.

b Select Add Service Reference. The
Add Service Reference dialog box
appears.

c In the Address field, enter:
http://localhost:8001/

AddMaster/

Note: Be sure to include the /
following AddMaster.

d In the Namespace field, enter
AddMasterProxy.

e Click OK.

a Enter the following command from
your client application directory to
generate AddMasterProxy.cs,
which contains client proxy
code. This command also
generates configuration file
App.config.svcutil.exe /
t:code http://

localhost:8001/AddMaster//

out:AddMasterProxy.cs /

config:App.config

Note: Enter the above command on
one line, without breaks.

b Add AddMasterProxy.cs and
App.config to your client project

9 Windows Communications Foundation Based Components

9-12

Port Reservations and Using localhost 8001

When running a self-hosted application, you may encounter issues with port
reservations. Use one of the tools below to modify your port configurations, as necessary.

if You Run.... Use This Tool to Modify Port Configurations....

Windows XP httpcfg

Windows Vista™ netsh

Windows 7 netsh

Compile the Client Program

The client program differs from the AddMaster.cs server program as follows:

• At start-up, this program connects to the AddMasterService provided by the
AddMaster WCF service.

• Instead of directly invoking the methods of the type-safe mechanism
IAddOne interface, the WCF client uses the method names defined in the
OperationContract attributes of IAddOne.

Compile the client program by doing the following:

1 Add the client code (AddMasterClient.cs) to your Microsoft Visual Studio project.
2 If you are not already referencing System.ServiceModel, add it to your Visual

Studio project.
3 Compile the WCF client program in Visual Studio.

WCF Client Program

using System;

using System.Text;

using System.ServiceModel;

namespace AddMasterClient

{

 class AddMasterClient

 {

 static void Main(string[] args)

 {

 try

 {

 // Connect to AddMaster Service

 Create Windows Communications Foundation Based Components

9-13

 Console.WriteLine("Conntecting to

 AddMaster Service through

 Http connection...");

 AddOneClient AddMaster =

 new AddOneClient("HttpBinding");

 Console.WriteLine("Conntected to

 AddMaster Service...");

 // Output as return value

 int one = 1;

 int two = AddMaster.addOne_1(one);

 Console.WriteLine("addOne({0}) = {1}",

 one, two);

 // Output: first parameter

 int i16 = 16;

 int o17 = 0;

 AddMaster.addOne_2(ref o17, i16);

 Console.WriteLine("addOne({0}) = {1}",

 i16, o17);

 // Output: second parameter

 int three = 0;

 AddMaster.addOne_3(two, ref three);

 Console.WriteLine("addOne({0}) = {1}",

 two, three);

 // Scalar doubles

 System.Double i495 = 495.0;

 System.Double third =

 AddMaster.addOne_4(i495);

 Console.WriteLine("addOne({0}) = {1}",

 i495, third);

 // Vector addition

 System.Double[] i = { 30, 60, 88 };

 System.Double[] o = AddMaster.addOne_5(i);

 Console.WriteLine(

 "addOne([{0} {1} {2}]) = [{3} {4} {5}]",

 i[0], i[1], i[2], o[0], o[1], o[2]);

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

9 Windows Communications Foundation Based Components

9-14

 }

 Console.WriteLine("Press any key to close

 the client application.");

 Console.ReadLine();

 Console.WriteLine("Closing client...");

 }

 }

}

Run the Client Program

Run the client program from a command line.

The output should be similar to the following:

Conntecting to AddMaster Service through Http connection...

Conntected to AddMaster Service...

addOne(1) = 2

addOne(16) = 17

addOne(2) = 3

addOne(495) = 496

addOne([30 60 88]) = [31 61 89]

addOne([0 2; 3 1]) = [1 3; 4 2]

Press any key to close the client application.

Pressing a key results in the following.

Closing client....

10

.NET Remoting

• “What Is .NET Remoting?” on page 10-2
• “.NET Remoting Prerequisites” on page 10-4
• “Select How Access an Assembly” on page 10-5
• “Create a Remotable .NET Assembly” on page 10-7
• “Access a Remotable .NET Assembly Using MWArray” on page 10-10
• “Access a Remotable .NET Assembly Using the Native .NET API: Magic Square” on

page 10-16
• “Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct” on

page 10-23

10 .NET Remoting

10-2

What Is .NET Remoting?

In this section...

“What Are Remotable Components?” on page 10-2
“Benefits of Using .NET Remoting” on page 10-2
“What’s the Difference Between WCF and .NET Remoting?” on page 10-2

What Are Remotable Components?

Remotable .NET components allow you to access MATLAB functionality remotely, as
part of a distributed system consisting of multiple applications, domains, browsers, or
machines.

Benefits of Using .NET Remoting

There are many reasons to create remotable components:

• Cost savings — Changes to business logic do not require you to roll out new software
to every client. Instead, you can confine new updates to a small set of business
servers.

• Increased security for web applications — Implementing .NET Remoting allows
your database, for example, to reside safely behind one or more firewalls.

• Software Compatibility — Using remotable components, which employ standard
formatting protocols like SOAP (Simple Object Access Protocol), can significantly
enhance the compatibility of the component with libraries and applications.

• Ability to run applications as Windows services — To run as a Windows service,
you must have access to a remoteable component hosted by the service. Applications
implemented as a Windows service provide many benefits to application developers
who require an automated server running as a background process independent of a
particular user account.

• Flexibility to isolate native code binaries that were previously incompatible
— Mix native and managed code without restrictions.

What’s the Difference Between WCF and .NET Remoting?

WCF is an end-to-end web service. Many of the advantages afforded by .NET Remoting
—a wide selection of protocol interoperability, for instance—can be achieved with a

 What Is .NET Remoting?

10-3

WCF interface, in addition to having access to a richer, more flexible set of native data
types. .NET Remoting can only support native objects.

WCF offers more robust choices in most every aspect of web-based development, even
implementation of a Java client, for example.

10 .NET Remoting

10-4

.NET Remoting Prerequisites

Before you enable .NET Remoting for your deployable component, be aware of the
following:

• You cannot enable both .NET Remoting and Windows Communication Foundation.
• It is important to determine if you derive more benefit and cost savings by using the

MWArray API or the native .NET API. Evaluate if .NET Remoting is appropriate for
your deployable component by reading “Select How Access an Assembly” on page
10-5.

 Select How Access an Assembly

10-5

Select How Access an Assembly

As of R2008b, there are two data conversion API’s that are available to marshal and
format data across the managed (.NET) / unmanaged (MATLAB) code boundary. In
addition to the previously available MWArray API, the new Native API is available. Each
API has advantages and limitations and each has particular applications for which it is
best suited.

The MWArray API, which consists of the MWArray class and several derived types
that map to MATLAB data types, is the standard API that has been used since the
introduction of MATLAB Compiler SDK. It provides full marshaling and formatting
services for all basic MATLAB data types including sparse arrays, structures, and cell
arrays. This API requires the MATLAB Runtime to be installed on the target machine as
it makes use of several primitive MATLAB functions. For information about using this
API, see “Access a Remotable .NET Assembly Using MWArray” on page 10-10.

The Native API was designed especially, though not exclusively, to support .NET
remoting. It allows you to pass arguments and return values using standard .NET types.
This feature is especially useful for clients that access a remoteable component using
the native interface API, as it does not require the client machine to have the MATLAB
Runtime installed. In addition, as only native .NET types are used in this API, there
is no need to learn semantics of a new set of data conversion classes. This API does
not directly support .NET analogs for the MATLAB structure and cell array types. For
information about using this API, see “Access a Remotable .NET Assembly Using the
Native .NET API: Magic Square” on page 10-16.

Features of the MWArray API Compared With the Native .NET API

 MWArray API Native .NET API

Marshaling/formatting for
all basic MATLAB types

X

Pass arguments and return
values using standard .NET
types

 X

Access to remotable
component from client
without installed MATLAB

 X

Access to remotable
component from client

 X

10 .NET Remoting

10-6

 MWArray API Native .NET API

without installed MATLAB
Runtime (see “Access a
Remotable .NET Assembly
Using the Native .NET API:
Cell and Struct” on page
10-23).

Using Native .NET Structure and Cell Arrays

The MATLAB Compiler SDK native .NET API accepts standard .NET data types for
inputs and outputs to MATLAB function calls.

These standard .NET data types are wrapped by the Object class—the base class for
all .NET data types. This object representation is sufficient as long as the MATLAB
functions have numeric, logical, or string inputs or outputs. It does not work well for
MATLAB-specific data types like structure (struct) and cell arrays, since the native
representation of these arrays types result in a multi-dimensional Object array that is
difficult to comprehend or process.

Instead, MATLAB Compiler SDK provides a special class hierarchy for struct and cell
array representation designed to easily interface with the native .NET API.

See “Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct” on
page 10-23 for details.

 Create a Remotable .NET Assembly

10-7

Create a Remotable .NET Assembly

In this section...

“Building a Remotable Component Using the Library Compiler App” on page 10-7
“Building a Remotable Component Using the mcc Command” on page 10-8
“Files Generated by the Compilation Process” on page 10-9

Building a Remotable Component Using the Library Compiler App

1 Copy the example files as follows depending on whether you plan to use the MWArray
API or the native .NET API:

• If using the MWArray API, copy the following folder that ships with the
MATLAB product to your working folder:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MagicRemoteExample\MWArrayAPI\MagicSquareRemoteComp

After you copy the files, at the MATLAB command prompt, change the working
directory (cd) to the new MagicSquareRemoteComp subfolder in your working
folder.

• If using the native .NET API, copy the following folder that ships with the
MATLAB product to your working folder:

matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET\MagicRemoteExample\NativeAPI\MagicSquareRemoteComp

After you copy the file, at the MATLAB command prompt, change the working
directory (cd) to the new MagicSquareRemoteComp subfolder in your working
folder.

2 Write the MATLAB function Your MATLAB code does not require any additions to
support .NET Remoting. The following code for the makesquare function is in the
file makesquare.m in the MagicSquareRemoteComp subfolder:

function y = makesquare(x)

 y = magic(x);

3 Click the Library Compiler app in the apps gallery.
4 In the Additional Runtime Settings area, select Enable .NET Remoting.

10 .NET Remoting

10-8

5 Build the .NET component. See the instructions in “Create a .NET Assembly” for
more details.

Building a Remotable Component Using the mcc Command

From the MATLAB prompt, issue the following command:

mcc -B "dotnet:CompName,ClassName,

FrameworkVersion,ShareFlag,

RemoteFlag"

where:

• CompName is the name of the component you want to create.
• ClassName is the name of the C# class to which the component belongs.
• FrameworkVersion is the version of .NET Framework for the component you are

building. For example, 2.0 would denote .NET Framework 2.0.
• ShareFlag designates access to the component. Values are either private or

shared. Default is private.
• RemoteFlag designates either a remote or local component. Values are either remote

or local. Default is local.

 Create a Remotable .NET Assembly

10-9

To build a private remotable component, the mcc command to build the component for
the .NET 2.0 Framework will look similar to:

mcc -B "dotnet:MagicSquareComp,MagicSquareClass,2.0,

 private,remote"

Files Generated by the Compilation Process

After compiling the components, ensure you have the following files in your
for_redistribution_files_only folder:

• MagicSquareComp.dll — The MWArray API component implementation assembly
used by the server.

• IMagicSquareComp.dll — The MWArray API component interface assembly used
by the client .

• MagicSquareCompNative.dll — The native .NET API component implementation
assembly used by the server.

• IMagicSquareCompNative.dll — The native .NET API component interface
assembly used by the client. You do not need to install a MATLAB Runtime on the
client when using this interface.

10 .NET Remoting

10-10

Access a Remotable .NET Assembly Using MWArray

Why Use MWArray API?

After you create the remotable component, you can set up a console server and client
using the MWArray API. For more information on choosing the right API for your access
needs, see “Select How Access an Assembly” on page 10-5.

Some reasons you might use the MWArray API instead of the native .NET API are:

• You are working with data structure arrays, which the native .NET API does not
support.

• You or your users work extensively with many MATLAB data types.
• You or your users are familiar and comfortable using the MWArray API.

For information on accessing your component using the native .NET API, see “Access a
Remotable .NET Assembly Using the Native .NET API: Magic Square” on page 10-16.

Coding and Building the Hosting Server Application and Configuration
File

The server application hosts the remote component built in “Create a Remotable .NET
Assembly” on page 10-7. You can also perform these steps using the native .NET API
as discussed in “Access a Remotable .NET Assembly Using the Native .NET API: Magic
Square” on page 10-16.

Build the server using the Microsoft Visual Studio project file MagicSquareServer
\MagicSquareMWServer.csproj:

1 Change the references for the generated component assembly to MagicSquareComp
\for_redistribution_files_only\MagicSquareComp.dll.

2 Select the appropriate build platform.
3 Select Debug or Release mode.
4 Build the MagicSquareMWServer project.
5 Supply the configuration file for the MagicSquareMWServer.

 Access a Remotable .NET Assembly Using MWArray

10-11

MagicSquareServer Code

Use the C# code for the server located in the file MagicSquareServer
\MagicSquareServer.cs:
 using System;

 using System.Runtime.Remoting;

 namespace MagicSquareServer

 {

 class MagicSquareServer

 {

 static void Main(string[] args)

 {

 RemotingConfiguration.Configure

 (@"..\..\..\..\MagicSquareServer.exe.config");

 Console.WriteLine("Magic Square Server started...");

 Console.ReadLine();

 }

 }

 }

This code does the following processing:

• Reads the associated configuration file to determine

• The name of the component that it will host
• The remoting protocol and message formatting to use
• The lease time for the remote component

• Signals that the server is active and waits for a carriage return to be entered before
terminating.

MagicSquareServer Configuration File

The configuration file for the MagicSquareServer is in the file MagicSquareServer
\MagicSquareServer.exe.config. The entire configuration file, written in XML,
follows:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown mode="SingleCall"

 type="MagicSquareComp.MagicSquareClass, MagicSquareComp"

 objectUri="MagicSquareClass.remote" />

 </service>

10 .NET Remoting

10-12

 <lifetime leaseTime= "5M" renewOnCallTime="2M"

 leaseManagerPollTime="10S" />

 <channels>

 <channel ref="tcp" port="1234">

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 </application>

 <debug loadTypes="true"/>

 </system.runtime.remoting>

</configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case, single call
mode

• The name of the remote component, the component assembly, and the object URI
(uniform resource identifier) used to access the remote component

• The lease time for the remote component
• The remoting protocol (TCP/IP) and port number
• The message formatter (binary) and the permissions for the communication channel

(full trust)
• The server debugging option

Coding and Building the Client Application and Configuration File

The client application, running in a separate process, accesses the remote component
running in the server application you built previously. (See “Coding and Building the
Hosting Server Application and Configuration File” on page 10-10.

Next build the remote client using the Microsoft Visual Studio project file
MagicSquareClient\MagicSquareMWClient.csproj. This file references both
the shared data conversion assembly matlabroot\toolbox\dotnetbuilder\bin
\win32\v2.0\ MWArray.dll and the generated component interface assembly
MagicSquareComp\for_redistribution_files_only\IMagicSquareComp.

To create the remote client using Microsoft Visual Studio:

1 Select the appropriate build platform.
2 Select Debug or Release mode.

 Access a Remotable .NET Assembly Using MWArray

10-13

3 Build the MagicSquareMWClient project.
4 Supply the configuration file for the MagicSquareMWServer.

MagicSquareClient Code

Use the C# code for the client located in the file MagicSquareClient
\MagicSquareClient.cs. The client code is shown here:
using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using IMagicSquareComp;

namespace MagicSquareClient

{

 class MagicSquareClient

 {

 static void Main(string[] args)

 {

 try

 {

 RemotingConfiguration.Configure

 (@"MagicSquareClient.exe.config");

 String urlServer=

 ConfigurationSettings.AppSettings["MagicSquareServer"];

 IMagicSquareClass magicSquareComp=

 (IMagicSquareClass)Activator.GetObject

 (typeof(IMagicSquareClass),

 urlServer);

 // Get user specified command line arguments or set default

 double arraySize= (0 != args.Length)

 ? Double.Parse(args[0]) : 4;

 // Compute the magic square and print the result

 MWNumericArray magicSquare=

 (MWNumericArray)magicSquareComp.makesquare

 (arraySize);

 Console.WriteLine("Magic square of order {0}\n\n{1}",

 arraySize, magicSquare);

10 .NET Remoting

10-14

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception.Message);

 }

 Console.ReadLine();

 }

 }

}

This code does the following:

• The client reads the associated configuration file to get the name and location of the
remoteable component.

• The client instantiates the remoteable object using the static Activator.GetObject
method

• From this point, the remoting client calls methods on the remoteable component
exactly as it would call a local component method.

MagicSquareClient Configuration File

The configuration file for the magic square client is in the file MagicSquareClient
\MagicSquareClient.exe.config. The configuration file, written in XML, is shown
here:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <add key="MagicSquareServer"

 value="tcp://localhost:1234/MagicSquareClass.remote"/>

 </appSettings>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel name="MagicSquareChannel" ref="tcp" port="0">

 <clientProviders>

 <formatter ref="binary" />

 </clientProviders>

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

This code specifies:

 Access a Remotable .NET Assembly Using MWArray

10-15

• The name of the remote component server and the remote component URI (uniform
resource identifier)

• The remoting protocol (TCP/IP) and port number
• The message formatter (binary) and the permissions for the communication channel

(full trust)

Starting the Server Application

Starting the server by doing the following:

1 Open a DOS or UNIX command window and cd to MagicSquareServer\bin
\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

Magic Square Server started...

Starting the Client Application

Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to MagicSquareClient\bin
\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MATLAB Runtime initializes, you should
see the following output:

Magic square of order 4

162313

511108

97612

414151

10 .NET Remoting

10-16

Access a Remotable .NET Assembly Using the Native .NET API:
Magic Square

Why Use the Native .NET API?

After the remotable component has been created, you can set up a server application and
client using the native .NET API. For more information on choosing the right API for
your access needs, see “Select How Access an Assembly” on page 10-5.

Some reasons you might use the native .NET API instead of the MWArray API are:

• You want to pass arguments and return values using standard .NET types, and you
or your users don't work extensively with data types specific to MATLAB.

• You want to access your component from a client machine without an installed
version of MATLAB.

For information on accessing your component using the MWArray API, see “Access a
Remotable .NET Assembly Using MWArray” on page 10-10.

Coding and Building the Hosting Server Application and Configuration
File

The server application will host the remote component you built in “Create a
Remotable .NET Assembly” on page 10-7.

The client application, running in a separate process, will access the remote component
hosted by the server application. Build the server with the Microsoft Visual Studio
project file MagicSquareServer\MagicSquareServer.csproj:

1 Change the reference for the generated component assembly to MagicSquareComp
\for_redistribution_files_only\MagicSquareCompNative.dll.

2 Select the appropriate build platform.
3 Select Debug or Release mode.
4 Build the MagicSquareServer project.
5 Supply the configuration file for the MagicSquareServer.

 Access a Remotable .NET Assembly Using the Native .NET API: Magic Square

10-17

MagicSquareServer Code

The C# code for the server is in the file MagicSquareServer\MagicSquareServer.cs.
The MagicSquareServer.cs server code is shown here:
using System;

 using System.Runtime.Remoting;

 namespace MagicSquareServer

 {

 class MagicSquareServer

 {

 static void Main(string[] args)

 {

 RemotingConfiguration.Configure

 (@"..\..\..\..\MagicSquareServer.exe.config");

 Console.WriteLine("Magic Square Server started...");

 Console.ReadLine();

 }

 }

 }

This code does the following:

• Reads the associated configuration file to determine the name of the component that
it will host, the remoting protocol and message formatting to use, as well as the lease
time for the remote component.

• Signals that the server is active and waits for a carriage return to be entered before
terminating.

MagicSquareServer Configuration File

The configuration file for the MagicSquareServer is in the file MagicSquareServer
\MagicSquareServer.exe.config. The entire configuration file, written in XML, is
shown here:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown mode="SingleCall"

 type="MagicSquareCompNative.MagicSquareClass,

 MagicSquareCompNative"

 objectUri="MagicSquareClass.remote" />

 </service>

 <lifetime leaseTime= "5M" renewOnCallTime="2M"

 leaseManagerPollTime="10S" />

 <channels>

10 .NET Remoting

10-18

 <channel ref="tcp" port="1234">

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 </application>

 <debug loadTypes="true"/>

 </system.runtime.remoting>

 </configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case, single call
mode

• The name of the remote component, the component assembly, and the object URI
(uniform resource identifier) used to access the remote component

• The lease time for the remote component
• The remoting protocol (TCP/IP) and port number
• The message formatter (binary) and the permissions for the communication channel

(full trust)
• The server debugging option

Coding and Building the Client Application and Configuration File

The client application, running in a separate process, accesses the remote
component running in the server application built in “Coding and Building the
Hosting Server Application and Configuration File” on page 10-16. Build the
remote client using the Microsoft Visual Studio project file MagicSquareClient
\MagicSquareClient.csproj. To create the remote client using Microsoft Visual
Studio:

1 Change the reference for the generated component assembly to MagicSquareComp
\for_redistribution_files_only\MagicSquareCompNative.dll.

2 Change the reference for the generated interface assembly to MagicSquareComp
\for_redistribution_files_only\IMagicSquareCompNative.dll.

3 Select the appropriate build platform.
4 Select Debug or Release mode.
5 Build the MagicSquareClient project.
6 Supply the configuration file for the MagicSquareServer.

 Access a Remotable .NET Assembly Using the Native .NET API: Magic Square

10-19

MagicSquareClient Code

The C# code for the client is in the file MagicSquareClient\MagicSquareClient.cs.
The client code is shown here:
using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using IMagicSquareCompNative;

namespace MagicSquareClient

{

 class MagicSquareClient

 {

 static void Main(string[] args)

 {

 try

 {

 RemotingConfiguration.Configure

 (@"MagicSquareClient.exe.config");

 String urlServer=

 ConfigurationSettings.AppSettings["MagicSquareServer"];

 IMagicSquareClassNative magicSquareComp=

 (IMagicSquareClassNative)Activator.GetObject

 (typeof(IMagicSquareClassNative), urlServer);

 // Get user specified command line arguments or set default

 double arraySize= (0 != args.Length)

 ? Double.Parse(args[0]) : 4;

 // Compute the magic square and print the result

 double[,] magicSquare=

 (double[,])magicSquareComp.makesquare(arraySize);

 Console.WriteLine("Magic square of order {0}\n", arraySize);

 // Display the array elements:

 for (int i = 0; i < (int)arraySize; i++)

 for (int j = 0; j < (int)arraySize; j++)

 Console.WriteLine

 ("Element({0},{1})= {2}", i, j, magicSquare[i, j]);

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception.Message);

10 .NET Remoting

10-20

 }

 Console.ReadLine();

 }

 }

}

This code does the following:

• The client reads the associated configuration file to get the name and location of the
remoteable component.

• The client instantiates the remoteable object using the static Activator.GetObject
method

• From this point, the remoting client calls methods on the remoteable component
exactly as it would call a local component method.

MagicSquareClient Configuration File

The configuration file for the magic square client is in the file MagicSquareClient
\MagicSquareClient.exe.config. The configuration file, written in XML, is shown
here:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <add key="MagicSquareServer"

 value="tcp://localhost:1234/MagicSquareClass.remote"/>

 </appSettings>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel name="MagicSquareChannel" ref="tcp" port="0">

 <clientProviders>

 <formatter ref="binary" />

 </clientProviders>

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

This code specifies:

• The name of the remote component server and the remote component URI (uniform
resource identifier)

 Access a Remotable .NET Assembly Using the Native .NET API: Magic Square

10-21

• The remoting protocol (TCP/IP) and port number
• The message formatter (binary) and the permissions for the communication channel

(full trust)

Starting the Server Application

Start the server by doing the following:

1 Open a DOS or UNIX command and cd to MagicSquareServer\bin
\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

Magic Square Server started...

Starting the Client Application

Start the client by doing the following:

1 Open a DOS or UNIX command window and cdto MagicSquareClient\bin
\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MATLAB Runtime initializes you should
see the following output:

Magic square of order 4

Element(0,0)= 16

Element(0,1)= 2

Element(0,2)= 3

Element(0,3)= 13

Element(1,0)= 5

Element(1,1)= 11

Element(1,2)= 10

Element(1,3)= 8

Element(2,0)= 9

Element(2,1)= 7

Element(2,2)= 6

Element(2,3)= 12

Element(3,0)= 4

Element(3,1)= 14

Element(3,2)= 15

Element(3,3)= 1

10 .NET Remoting

10-22

 Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct

10-23

Access a Remotable .NET Assembly Using the Native .NET API: Cell
and Struct

Why Use the .NET API With Cell Arrays and Structs?

Using .NET representations of MATLAB struct and cell arrays is recommended if both of
these are true:

• You have MATLAB functions on a server with MATLAB struct or cell data types as
inputs or outputs

• You do not want or need to install a MATLAB Runtime on your client machines

The native MWArray, MWStructArray, and MWCellArray classes are members of the
MathWorks.MATLAB.NET.Arrays.native namespace.

The class names in this namespace are identical to the class names in the
MathWorks.MATLAB.NET.Arrays. The difference is that the native representation of
struct and cell arrays have no methods or properties that require a MATLAB Runtime.

The matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET folder has
example solutions you can practice building. The NativeStructCellExample folder
contains native struct and cell examples.

Building Your Component

This example demonstrates how to deploy a remotable component using native struct
and cell arrays. Before you set up the remotable client and server code, build a remotable
component.

If you have not yet built the component you want to deploy, see the instructions in
“Building a Remotable Component Using the Library Compiler App” on page 10-7 or
“Building a Remotable Component Using the mcc Command” on page 10-8.

The Native .NET Cell and Struct Example

The server application hosts the remote component.

The client application, running in a separate process, accesses the remote component
hosted by the server application. Build the server with the Microsoft Visual Studio
project file NativeStructCellServer.csproj:

10 .NET Remoting

10-24

1 Change the references for the generated component assembly
to component_name\for_redistribution_files_only
\component_nameNative.dll.

2 Select the appropriate build platform.
3 Select Debug or Release mode.
4 Build the NativeStructCellServer project.
5 Supply the configuration file for the NativeStructCellServer. The C# code for

the server is in the file NativeStructCellServer.cs:

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

namespace NativeStructCellServer

{

 class NativeStructCellServer

 {

 static void Main(string[] args)

 {

 RemotingConfiguration.Configure(

 @"NativeStructCellServer.exe.config");

 Console.WriteLine("NativeStructCell Server started...");

 Console.ReadLine();

 }

 }

}

This code reads the associated configuration file to determine:

• Name of the component to host
• Remoting protocol and message formatting to use
• Lease time for the remote component

In addition, the code also signals that the server is active and waits for a carriage
return before terminating.

Coding and Building the Client Application and Configuration File

The client application, running in a separate process, accesses the remote component
running in the server application built in “The Native .NET Cell and Struct Example”
on page 10-23. Build the remote client using the Microsoft Visual Studio project

 Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct

10-25

file NativeStructCellClient\NativeStructCellClient.csproj. To create the
remote client using Microsoft Visual Studio:

1 Change the references for the generated component assembly
to component_name\for_redistribution_files_only
\component_nameNative.dll.

2 Change the references for the generated interface assembly
to component_name\for_redistribution_files_only
\Icomponent_nameNative.dll.

3 Select the appropriate build platform.
4 Select Debug or Release mode.
5 Build the NativeStructCellClient project.
6 Supply the configuration file for the NativeStructCellClient.

NativeStructCellClient Code

The C# code for the client is in the file NativeStructCellClient
\NativeStructCellClient.cs:
using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

using System.Configuration;

using MathWorks.MATLAB.NET.Arrays.native;

using INativeStructCellCompNative;

// This is a simple example that demonstrates the use

// of MathWorks.MATLAB.NET.Arrays.native package.

namespace NativeStructCellClient

{

 class NativeStructCellClient

 {

 static void Main(string[] args)

 {

 try

 {

 RemotingConfiguration.Configure(

 @"NativeStructCellClient.exe.config");

 String urlServer =

 ConfigurationSettings.AppSettings["NativeStructCellServer"];

 INativeStructCellClassNative nativeStructCell =

 (INativeStructCellClassNative)Activator.GetObject(typeof

 (INativeStructCellClassNative), urlServer);

 MWCellArray field_names = new MWCellArray(1, 2);

10 .NET Remoting

10-26

 field_names[1, 1] = "Name";

 field_names[1, 2] = "Address";

 Object[] o = nativeStructCell.createEmptyStruct(1,field_names);

 MWStructArray S1 = (MWStructArray)o[0];

 Console.WriteLine("\nEVENT 2: Initialized structure as

 received in client applications:\n\n{0}" , S1);

 //Convert "Name" value from char[,] to a string since there's

 no MWCharArray constructor on server that accepts

 //char[,] as input.

 char c = ((char[,])S1["Name"])[0, 0];

 S1["Name"] = c.ToString();

 MWStructArray address = new MWStructArray(new int[] { 1, 1 },

 new String[] { "Street", "City", "State", "Zip" });

 address["Street", 1] = "3, Apple Hill Drive";

 address["City", 1] = "Natick";

 address["State", 1] = "MA";

 address["Zip", 1] = "01760";

 Console.WriteLine("\nUpdating the 'Address' field to

 :\n\n{0}", address);

 Console.WriteLine("\n#################################\n");

 S1["Address",1] = address;

 Object[] o1 = nativeStructCell.updateField(1, S1, "Name");

 MWStructArray S2 = (MWStructArray)o1[0];

 Console.WriteLine("\nEVENT 5: Final structure as

 received by client:\n\n{0}" , S2);

 Console.WriteLine("\nAddress field: \n\n{0}" , S2["Address",1]);

 Console.WriteLine("\n#################################\n");

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception.Message);

 }

 Console.ReadLine();

 }

 }

}

This code does the following:

• The client reads the associated configuration file to get the name and location of the
remoteable component.

• The client instantiates the remoteable object using the static Activator.GetObject
method

• From this point, the remoting client calls methods on the remoteable component
exactly as it would call a local component method.

 Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct

10-27

NativeStructCellClient Configuration File

The configuration file for the NativeStructCellClient is in the file
NativeStructCellClient\NativeStructCellClient.exe.config:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <add key="NativeStructCellServer" value=

 "tcp://localhost:1236/NativeStructCellClass.remote"/>

 </appSettings>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel name="NativeStructCellChannel" ref="tcp" port="0">

 <clientProviders>

 <formatter ref="binary" />

 </clientProviders>

 <serverProviders>

 <formatter ref="binary" typeFilterLevel="Full" />

 </serverProviders>

 </channel>

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

This code specifies:

• Name of the remote component server and the remote component URI (uniform
resource identifier)

• Remoting protocol (TCP/IP) and port number
• Message formatter (binary) and the permissions for the communication channel

(full trust)

Starting the Server Application

Start the server by doing the following:

1 Open a DOS or UNIX command window and cd to NativeStructCellServer\bin
\x86\v2.0\Debug.

2 Run NativeStructCellServer.exe. The following output appears:

EVENT 1: Initializing the structure on server and sending

 it to client:

 Initialized empty structure:

10 .NET Remoting

10-28

 Name: ' '

 Address: []

##################################

EVENT 3: Partially initialized structure as

 received by server:

 Name: ' '

 Address: [1x1 struct]

Address field as initialized from the client:

 Street: '3, Apple Hill Drive'

 City: 'Natick'

 State: 'MA'

 Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before sending the

 structure back to the client:

 Name: 'The MathWorks'

 Address: [1x1 struct]

##################################

Starting the Client Application

Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to NativeStructCellClient\bin
\x86\v2.0\Debug.

2 Run NativeStructCellClient.exe. After the MATLAB Runtime initializes, the
following output appears:

EVENT 2: Initialized structure as

 received in client applications:

1x1 struct array with fields:

 Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct

10-29

 Name

 Address

Updating the 'Address' field to :

1x1 struct array with fields:

 Street

 City

 State

 Zip

#################################

EVENT 5: Final structure as received by client:

1x1 struct array with fields:

 Name

 Address

Address field:

1x1 struct array with fields:

 Street

 City

 State

 Zip

#################################

Coding and Building the Client Application and Configuration File with
the Native MWArray, MWStructArray, and MWCellArray Classes

createEmptyStruct.m

Initialize the structure on the server and send it to the client with the following
MATLAB code:
function PartialStruct = createEmptyStruct(field_names)

fprintf('EVENT 1: Initializing the structure on server

 and sending it to client:\n');

PartialStruct = struct(field_names{1},' ',field_names{2},[]);

10 .NET Remoting

10-30

fprintf(' Initialized empty structure:\n\n');

disp(PartialStruct);

fprintf('\n##################################\n');

updateField.m

Receive the partially updated structure from the client and add more data to it, before
passing it back to the client, with the following MATLAB code:
function FinalStruct = updateField(st,field_name)

fprintf('\nEVENT 3: Partially initialized structure as

 received by server:\n\n');

disp(st);

fprintf('Address field as initialized from the client:\n\n');

disp(st.Address);

fprintf('##################################\n');

fprintf(['\nEVENT 4: Updating ''', field_name, '''

 field before sending the structure back to the client:\n\n']);

st.(field_name) = 'The MathWorks';

FinalStruct = st;

disp(FinalStruct);

fprintf('\n##################################\n');

NativeStructCellClient.cs

Create the client C# code:

Note: In this case, you do not need the MATLAB Runtime on the system path.

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

using System.Configuration;

using MathWorks.MATLAB.NET.Arrays.native;

using INativeStructCellCompNative;

// This is a simple example that demonstrates the use of

// MathWorks.MATLAB.NET.Arrays.native package.

namespace NativeStructCellClient

{

 class NativeStructCellClient

 {

 static void Main(string[] args)

 {

 try

 {

 RemotingConfiguration.Configure

 Access a Remotable .NET Assembly Using the Native .NET API: Cell and Struct

10-31

 (@"NativeStructCellClient.exe.config");

 String urlServer =

 ConfigurationSettings.AppSettings[

 "NativeStructCellServer"];

 INativeStructCellClassNative nativeStructCell =

 (INativeStructCellClassNative)Activator.GetObject(typeof

 (INativeStructCellClassNative),

 urlServer);

 MWCellArray field_names = new MWCellArray(1, 2);

 field_names[1, 1] = "Name";

 field_names[1, 2] = "Address";

 Object[] o = nativeStructCell.createEmptyStruct(1,field_names);

 MWStructArray S1 = (MWStructArray)o[0];

 Console.WriteLine("\nEVENT 2: Initialized structure as received

 in client applications:\n\n{0}" , S1);

 //Convert "Name" value from char[,] to a string since

 // there's no MWCharArray constructor

 // on server that accepts char[,] as input.

 char c = ((char[,])S1["Name"])[0, 0];

 S1["Name"] = c.ToString();

 MWStructArray address =

 want new MWStructArray(new int[] { 1, 1 },

 new String[] { "Street", "City", "State", "Zip" });

 address["Street", 1] = "3, Apple Hill Drive";

 address["City", 1] = "Natick";

 address["State", 1] = "MA";

 address["Zip", 1] = "01760";

 Console.WriteLine("\nUpdating the

 'Address' field to :\n\n{0}", address);

 Console.WriteLine("\n#################################\n");

 S1["Address",1] = address;

 Object[] o1 = nativeStructCell.updateField(1, S1, "Name");

 MWStructArray S2 = (MWStructArray)o1[0];

 Console.WriteLine("\nEVENT 5: Final structure as received by

 client:\n\n{0}" , S2);

 Console.WriteLine("\nAddress field: \n\n{0}" , S2["Address",1]);

 Console.WriteLine("\n#################################\n");

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception.Message);

 }

 Console.ReadLine();

 }

 }

}

10 .NET Remoting

10-32

NativeStructCellServer.cs

Create the server C# code:
using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

namespace NativeStructCellServer

{

 class NativeStructCellServer

 {

 static void Main(string[] args)

 {

 RemotingConfiguration.Configure(

 @"NativeStructCellServer.exe.config");

 Console.WriteLine("NativeStructCell Server started...");

 Console.ReadLine();

 }

 }

}

11

Troubleshooting

• “View the Latest Build Log” on page 11-2
• “Failure to Find a Required File” on page 11-3
• “Diagnostic Messages” on page 11-4

11 Troubleshooting

11-2

View the Latest Build Log

To view the log of your most recent build process, open /projName/PackagingLog.txt.

 Failure to Find a Required File

11-3

Failure to Find a Required File

If your application generates a diagnostic message indicating that a module cannot be
found, it could be that the MATLAB Runtime is not properly located on your path. How
you fix this problem depends on whether it occurs on a development machine (where you
are using the MATLAB Compiler SDK product to create an assembly) or target machine
(where you are trying to use the assembly in your application). The required locations are
as follows for the MATLAB Runtime according to development versus target machines.

• Make sure that matlabroot\runtime\architecture appears on your system path
ahead of any other MATLAB installations.
(matlabroot is your root MATLAB folder.)

• Verify that mcr_root\ver\runtime
\architecture appears on your system path.
(mcr_root is your root MATLAB Runtime folder) and ver represents the version
number.

11 Troubleshooting

11-4

Diagnostic Messages

The following table shows diagnostic messages you might encounter, probable causes for
the message, and suggested solutions.

See the following table for information about some diagnostic messages.

Diagnostic Messages and Suggested Solutions

Message Probable Cause Suggested Solution

LoadLibrary

("component_name_1_0.dll")

failed - The specified

module could not be

found.

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if the MATLAB
product is not on the
system path.

See “Failure to Find a Required
File” on page 11-3.

Error in component_name.

class_name.x: Error

getting data conversion

flags.

This is often caused by
mwcomutil.dll not being
registered.

1 Open a DOS window.
2 Change folders to

matlabroot\runtime

\architecture.
3 Run the following command:

mwregsvr mwcomutil.dll

(matlabroot is your root MATLAB
folder.)

Error in VBAProject:

ActiveX component can't

create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,

1 Open a DOS window.
2 Change folders to

projectdir\distrib.
3 Run the following command:

mwregsvr projectdll.dll

(projectdir represents the
location of your project files).

 Diagnostic Messages

11-5

Message Probable Cause Suggested Solution

object ref not set to

instance of an object

This occurs when an
object that has not been
instantiated is called

Instantiate the object.

Error in VBAProject:

Automation error The

specified module could

not be found.

This usually occurs if
MATLAB is not on the
system path.

See “Failure to Find a Required
File” on page 11-3.

Showing a modal

dialog box or form

when the application

is not running in

UserInteractive

mode is not a valid

operation. Specify the

ServiceNotification

or DefaultDesktopOnly

style to display a

notification from a

service application.

This warning occurs when
ASP.NET code tries to
bring up a dialog box.

If occurs because
getframe() makes the
figure window visible
before performing the
capture and thus fails when
running in IIS. msgbox()
calls in MATLAB code
cause the warning to
appear also.

Work around this problem by doing
the following:

1 Open the Windows Control
Panel.

2 Open Services.
3 From the list of services, select

and open the IIS Admin
service.

4 In the Properties dialog, on
the Log On tab, select Local
System Account.

5 Select the option Allow
Service to Interact with
Desktop.

Enhanced Error Diagnostics Using mstack Trace

Use this enhanced diagnostic feature to troubleshoot problems that occur specifically
during MATLAB code execution.

To implement this feature, use .NET exception handling to invoke the MATLAB function
inside of the .NET application, as demonstrated in this try-catch code block:

try

{

Magic magic = new Magic();

magic.callmakeerror();

}

catch(Exception ex)

11 Troubleshooting

11-6

{

Console.WriteLine("Error: {0}", exception);

}

When an error occurs, the MATLAB code stack trace is printed before the Microsoft .NET
application stack trace, as follows:

... MATLAB code Stack Trace ...

 at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\

CalldmakeerrComp_mcr\compiler\g388611\ca

thy\MagicDemoComp\dmakeerror.m,name

dmakeerror_error2,line at 14.

 at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\

CalldmakeerrComp_mcr\compiler\g388611\ca

thy\MagicDemoComp\dmakeerror.m,name

dmakeerror_error1,line at 11.

 at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\

CalldmakeerrComp_mcr\compiler\g388611\ca

thy\MagicDemoComp\dmakeerror.m,name dmakeerror,line at 4.

 at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\

CalldmakeerrComp_mcr\compiler\g388611\ca

thy\MagicDemoComp\calldmakeerror.m,name

calldmakeerror,line at 2.

... .Application Stack Trace ...

 at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction

(String functionName, Int32 numArgsOut, Int

32 numArgsIn, MWArray[] argsIn)

 at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction

(Int32 numArgsOut, String functionName, MWA

rray[] argsIn)

 at CalldmakeerrComp.Calldmakeerr.calldmakeerror() in

h:\compiler\g388611\cathy\MagicDemoComp\src\

Calldmakeerr.cs:line 140

 at MathWorks.Demo.MagicSquareApp.MagicDemoApp.Main(String[]

 args) in H:\compiler\g388611\cathy\Ma

gicDemoCSharpApp\MagicDemoApp.cs:line 52

12

Reference Information

• “Requirements for the MATLAB Compiler SDK .NET Target” on page 12-2
• “Data Conversion Rules” on page 12-3
• “Overview of Data Conversion Classes” on page 12-10

12 Reference Information

12-2

Requirements for the MATLAB Compiler SDK .NET Target

In this section...

“System and Product Requirements” on page 12-2
“Path Modifications Required for Accessibility” on page 12-2

System and Product Requirements

You must have the MATLAB and MATLAB Compiler products installed to install the
MATLAB Compiler SDK product.

The MATLAB Compiler SDK .NET target is available only on Windows.

For an up-to-date list of all the system and compiler software supported by MATLAB,
MATLAB Compiler, and MATLAB Compiler SDK see http://www.mathworks.com/
support/compilers/current_release/.

Path Modifications Required for Accessibility

In order to use some screen-readers or assistive technologies, such as JAWS®, you must
add the following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll

matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Data Conversion Rules

12-3

Data Conversion Rules

In this section...

“Managed Types to MATLAB Arrays” on page 12-3
“MATLAB Arrays to Managed Types” on page 12-3
“.NET Types to MATLAB Types” on page 12-4
“Character and String Conversion” on page 12-9
“Unsupported MATLAB Array Types” on page 12-9

Managed Types to MATLAB Arrays

The following table lists the data conversion rules used when converting native .NET
types to MATLAB arrays.

Note: The conversion rules listed in these tables apply to scalars, vectors, matrices, and
multidimensional arrays of the native types listed.

Conversion Rules: Managed Types to MATLAB Arrays

Native .NET Type MATLAB Array Comments

System.Double double —
System.Single single

System.Int64 int64

System.Int32 int32

System.Int16 int16

System.Byte int8

Available only when the makeDouble constructor
argument is set to false. The default is true,
which creates a MATLAB double type.

System.String char None
System.Boolean logical None

MATLAB Arrays to Managed Types

The following table lists the data conversion rules used when converting MATLAB arrays
to native .NET types.

12 Reference Information

12-4

Note: The conversion rules apply to scalars, vectors, matrices, and multidimensional
arrays of the listed MATLAB types.

Conversion Rules: MATLAB Arrays to Managed Types

MATLAB Type .NET Type (Primitive) .NET Type (Class) Comments

cell N/A MWCellArray

structure N/A MWStructArray

char System.String MWCharArray

Cell and struct
arrays have no
corresponding .NET
type.

double System.Double MWNumericArray

single System.Single MWNumericArray

Default is type double.

uint64 System.Int64 MWNumericArray Not supported
uint32 System.Int32 MWNumericArray Not supported
uint16 System.Int16 MWNumericArray Not supported
uint8 System.Byte MWNumericArray None
logical System.Boolean MWLogicalArray None
Function
handle

N/A N/A None

Object N/A N/A None

.NET Types to MATLAB Types

In order to create .NET interfaces that describe the type-safe API of a MATLAB
Compiler SDK generated component, you must decide on the .NET types used for input
and output parameters.

When choosing input types, consider how .NET inputs become MATLAB types. When
choosing output types, consider the inverse conversion

The following tables list the data conversion results and rules used to convert .NET types
to MATLAB arrays and MATLAB arrays to .NET types.

Note: Invalid conversions result in a thrown ArgumentException

 Data Conversion Rules

12-5

Conversion Results: .NET Types to MATLAB Types

.NET Type Converts to MATLAB Type

NumericType

• System.Double

• System.Single

• System.Byte

• System.Int16

• System.Int32

• System.Int64

• System.Int64

numeric

System.Boolean logical

System.Char

System.String

char

NumericType[N] NumericType[1,N]

NumericType[Pn,..,P1,M,N] NumericType[M,N,P1,..,Pn]

System.Boolean[N] logical [1,N]

System.Boolean[Pn,..,P1,M,N] logical [M,N,P1,..,Pn]

System.Char[N] char [1,N]

System.Char[Pn,..,P1,M,N] char [M,N,P1,..,Pn]

System.String[N] char [N,max_string_length]

System.String[Pn,..,P1,N] char [N,max_string_length,

P1,..,Pn]

Scalar .NET struct MATLAB struct constructed from public
instance fields of the .NET struct

.NET struct [N] MATLAB struct [1,N] where each element
is constructed from public instance fields of
the .NET struct

.NET struct [M,N] MATLAB struct [M,N] where each element
is constructed from public instance fields of
the .NET struct

12 Reference Information

12-6

.NET Type Converts to MATLAB Type

native.MWStructArray struct

native.MWCellArray cell

Hashtable struct

Dictionary <K,V>

Where K = string and V = scalar or array
of [Numeric, boolean, Char, String]

struct

ArrayList cell

Any other .NET type in the default
application domain

.NET object

Any other serializable .NET type in a
non-default application domain

.NET object

Conversion Rules: MATLAB Numeric Types to .NET Types

To Convert This MATLAB Type: To this: Follow these rules:

Scalar The type must be scalar in
MATLAB. For example, a 1
X 1 int in MATLAB.

Vector The type must be a vector in
MATLAB. For example, a 1
X N or N X 1 int array in
MATLAB.

numeric

N-dimensional array The N-dimensional array
type specified by the user
must match the rank of the
MATLAB numeric array.

Tip When converting MATLAB numeric arrays, widening conversions are allowed. For
example, an int can be converted to a double. The type specified must be a numeric
type that is equal or wider. Narrowing conversions throw an ArgumentException.

 Data Conversion Rules

12-7

Caution .NET types are not as flexible as MATLAB types. Take care and test
appropriately with .NET outputs before integrating data into your applications.

Conversion Rules: MATLAB Char Arrays to .NET Types

To Convert This MATLAB Type: To this: Follow these rules:

Char The char must be scalar.
Char array The N-dimensional Char type

must match the rank of the
MATLAB char array.

String MATLAB char array must
be [1,N]

char

String array The N-dimensional MATLAB
char array can be converted
to (N-1)-dimensional array
of type String.

Conversion Rules: MATLAB Logical Arrays to .NET Types

To Convert This MATLAB Type: To this: Follow these rules:

Boolean The logical must be scalar.
Boolean[] The MATLAB logical

array must be [1,N] or
[N,1].

logical

Boolean array The N-dimensional Boolean
array must match the rank
of the MATLAB logical
array.

Conversion Rules: Cell Array to .NET Types

To Convert This MATLAB Type: To this: Follow these rules:

cell System.Array The N-dimensional MATLAB
cell array is converted
to an N-dimensional
System.Array of type
object.

12 Reference Information

12-8

To Convert This MATLAB Type: To this: Follow these rules:

ArrayList The MATLAB cell array
must be a vector.

Caution If the MATLAB cell array contains a struct, it is left unchanged. All
other types are converted to native types. Any nested cell array is converted to a
System.Array matching the dimension of the cell array, as illustrated in this code
snippet:

Let C = {[1,2,3], {[1,2,3]},'Hello world'}

% be a cell

C can be converted to an object[1,3] where object[1,1] contains
int[,]object[1,2] contains an object[1,1] whose first element in an int[,]
object[1,3] contains char[,].

Note: Any nested cell array is converted to a System.Array that matches the dimension
of the cell array

Conversion Rules: Struct to .NET Types

To Convert This MATLAB Type: To this: Follow these rules:

.NET struct The name and number
of public fields in the
specified .NET struct must
match the name and number
of fields in the MATLAB
struct.

struct

Hashtable A scalar struct can be
converted to a Hashtable.
Any nested struct will
also be converted to a
Hashtable. If the nested
struct is not a scalar, then
an ArgumentException is
thrown. The dictionary key
must be of type String.

 Data Conversion Rules

12-9

Conversion Rules: .NET Objects in MATLAB to .NET Native Objects

To Convert this MATLAB Type: To this: Follow these rules:

.NET object Type or super-type of the
containing object

A .NET object in MATLAB
can only be converted to a
type or a super-type.

Character and String Conversion

A native .NET string is converted to a 1-by-N MATLAB character array, with N equal to
the length of the .NET string.

An array of .NET strings (string[]) is converted to an M-by-N character array, with M
equal to the number of elements in the string ([]) array and N equal to the maximum
string length in the array.

Higher dimensional arrays of String are similarly converted.

In general, an N-dimensional array of String is converted to an N+1 dimensional
MATLAB character array with appropriate zero padding where supplied strings have
different lengths.

Unsupported MATLAB Array Types

The MATLAB Compiler SDK product does not support the following MATLAB array
types because they are not CLS-compliant:

• int8

• uint16

• uint32

• uint64

Note: While it is permissible to pass these types as arguments to a MATLAB Compiler
SDK component, it is not permissible to return these types, as they are not CLS
compliant.

12 Reference Information

12-10

Overview of Data Conversion Classes

In this section...

“Overview” on page 12-10
“Returning Data from MATLAB to Managed Code” on page 12-10
“Example of MWNumericArray in a .NET Application” on page 12-11
“Interfaces Generated by the MATLAB Compiler SDK .NET Target” on page 12-11

Overview

The data conversion classes are

• MWArray

• MWIndexArray

• MWCellArray

• MWCharacterArray

• MWLogicalArray

• MWNumericArray

• MWStructArray

MWArray and MWIndexArray are abstract classes. The other classes represent the
standard MATLAB array types: cell, character, logical, numeric, and struct. Each class
provides constructors and a set of properties and methods for creating and accessing the
state of the underlying MATLAB array.

There are some data types (cell arrays, structure arrays, and arrays of complex numbers)
commonly used in the MATLAB product that are not available as native .NET types.
To represent these data types, you must create an instance of eitherMWCellArray,
MWStructArray, or MWNumericArray.

Returning Data from MATLAB to Managed Code

All data returned from a MATLAB function to a .NET method is represented as an
instance of the appropriate MWArray subclass. For example, a MATLAB cell array is
returned as an MWCellArray object.

 Overview of Data Conversion Classes

12-11

Return data is not automatically converted to a native array. If you need to get the
corresponding native array type, call the ToArray method, which converts a MATLAB
array to the appropriate native data type, except for cell and struct arrays.

Example of MWNumericArray in a .NET Application

Here is a code fragment that shows how to convert a double value (5.0) to a
MWNumericArray type:

MWNumericArray arraySize = 5.0;

magicSquare = magic.MakeSqr(arraySize);

After the double value is converted and assigned to the variable arraySize,
you can use the arraySize argument with the MATLAB based method
without further conversion. In this example, the MATLAB based method is
magic.MakeSqr(arraySize).

Interfaces Generated by the MATLAB Compiler SDK .NET Target

For each MATLAB function that you specify as part of a .NET assembly, the MATLAB
Compiler SDK product generates an API based on the MATLAB function signature, as
follows:

• A single output signature that assumes that only a single output is required and
returns the result in a single MWArray rather than an array of MWArray.

• A standard signature that specifies inputs of type MWArray and returns values as an
array of MWArray.

• A feval signature that includes both input and output arguments in the argument list
rather than returning outputs as a return value. Output arguments are specified first,
followed by the input arguments.

Single Output API

Note: Typically you use the single output interface for MATLAB functions that return a
single argument. You can also use the single output interface when you want to use the
output of a function as the input to another function.

For each MATLAB function, the MATLAB Compiler SDK product generates a wrapper
class that has overloaded methods to implement the various forms of the generic

12 Reference Information

12-12

MATLAB function call. The single output API for a MATLAB function returns a single
MWArray.

For example, the following table shows a generic function foo along with the single
output API that the compiler generates for its several forms.

Generic MATLAB
function

function [Out1, Out2, ..., varargout] = foo(In1, In2, ..., InN,

varargin)

API if there are no
input arguments

public MWArray foo()

API if there are
one or more input
arguments

public MWArray foo(MWArray In1, MWArray In2...MWArray inN)

API if there are
optional input
arguments

public MWArray foo(MWArray In1, MWArray In2, ..., MWArray

inN

params MWArray[] varargin)

In the example, the input arguments In1, In2, and inN are of type MWArray.

Similarly, in the case of optional arguments, the params arguments are of type MWArray.
(The varargin argument is similar to the varargin function in MATLAB — it allows
the user to pass a variable number of arguments.)

Note: When you call a class method in your .NET application, specify all required inputs
first, followed by any optional arguments.

Functions having a single integer input require an explicit cast to type MWNumericArray
to distinguish the method signature from a standard interface signature that has no
input arguments.

Standard API

Typically you use the standard interface for MATLAB functions that return multiple
output values.

The standard calling interface returns an array of MWArray rather than a single array
object.

 Overview of Data Conversion Classes

12-13

The standard API for a generic function with none, one, more than one, or a variable
number of arguments, is shown in the following table.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] = foo(In1, In2, ..., InN,

varargin)

API if there
are no input
arguments

public MWArray[] foo(int numArgsOut)

API if there
is one input
argument

public MWArray [] foo(int numArgsOut, MWArray In1)

API if there are
two to N input
arguments

public MWArray[] foo(int numArgsOut, MWArray In1,MWArray In2,

\... MWArray InN)

API if there
are optional
arguments,
represented by
the varargin
argument

public MWArray[] foo(int numArgsOut,MWArray in1,MWArray in2,

MWArray InN,

params MWArray[]

varargin)

Details about the arguments for these samples of standard signatures are shown in the
following table.

Argument Description Details

numArgsOut Number of outputs An integer indicating the number of outputs
you want the method to return.

The value of numArgsOut must be less than or
equal to the MATLAB function nargout.

The numArgsOut argument must always be
the first argument in the list.

In1,

In2, ...InN

Required input
arguments

All arguments that follow numArgsOut in the
argument list are inputs to the method being
called.

12 Reference Information

12-14

Argument Description Details

Specify all required inputs first. Each required
input must be of type MWArray or one of its
derived types.

varargin Optional inputs You can also specify optional inputs if your
MATLAB code uses the varargin input:
list the optional inputs, or put them in an
MWArray[] argument, placing the array last
in the argument list.

Out1,

Out2, ...OutN

Output arguments With the standard calling interface, all
output arguments are returned as an array of
MWArray.

feval API

In addition to the methods in the single API and the standard API, in most cases,
the MATLAB Compiler SDK product produces an additional overloaded method. If
the original MATLAB code contains no output arguments, then the compiler will not
generate the feval method interface.

For a function with the following structure:

function [Out1, Out2, ..., varargout] = foo(In1, In2, ..., InN,

varargin)

The compiler generates the following API, known as the feval interface,

public void foo

 (int numArgsOut,

 ref MWArray [] ArgsOut,

 MWArray[] ArgsIn)

where the arguments are as follows:

numArgsOut Number of
outputs

Same as standard interface.

An integer indicating the number of outputs
you want to return.

This number generally matches the
number of output arguments that follow.

 Overview of Data Conversion Classes

12-15

The varargout array counts as just one
argument, if present.

ref MWArray []

ArgsOut

Output
arguments

Following numArgsOut are all the outputs
of the original MATLAB code, each listed in
the same order as they appear on the left
side of the original MATLAB code.

A ref attribute prefaces all output
arguments indicating that these arrays are
passed by reference.

MWArray[] ArgsIn Input
arguments

MWArray types or a supported .NET
primitive type.

When you pass an instance of an MWArray
type, the underlying MATLAB array is
passed directly to the called function. Native
types are first converted to MWArray types.

13

Function Reference

enableTSUtilsfromNetworkDrive
ntswrap

13 Function Reference

13-2

enableTSUtilsfromNetworkDrive
Sets the trust setting to load .NET assemblies from network drive

Syntax

enableTSUtilsfromNetworkDrive

Description

enableTSUtilsfromNetworkDrive sets the trust setting so that the MATLAB
Compiler SDK module can load .NET assemblies from remote drives.

Note: This is only required when using .NET 2.0 or 3.5.

Tips

• Administrator privileges are required to run this command.

Examples

To enable use of MATLAB Compiler SDK on a system, enter the following on the
MATLAB command line after logging in with Administrator privileges:

enableTSUtilsfromNetworkDrive

 ntswrap

13-3

ntswrap
Generates type-safe API

Syntax

ntswrap.exe [-c namespace.class] [-i interface_name] [-a

assembly_name]

Description

Available as a MATLAB function or Windows console executable.

ntswrap.exe [-c namespace.class] [-i interface_name] [-a

assembly_name] accepts command line switches in any order.

Run ntswrap for “Generate the Type-Safe API with an Assembly” on page 7-8 with a
MATLAB Compiler SDK generated assembly.

Arguments

Inputs

-a .NET_native_interface.dll
Absolute or relative path to assembly containing .NET statically-typed interface,
referenced by -i switch.

-b MATLAB_NET_assembly.dll
Path to folder containing .NET assembly that defines component referenced by -c
switch

-c component_class_name
Namespace-qualified name of assembly identified by path in -b switch

-d

Enables debugging of the type-safe API assembly

13 Function Reference

13-4

Incompatible with -s.
-i interface_name

Namespace-qualified name of user-supplied interface in assembly identified by path
in -a switch

-k

Keep generated type safe API source code; do not delete after processing
-n namespace_containing_generated_type-safe_API_class

Optional. If specified, places generated type-safe API in specifed namespace
-o output_folder

Optional. If specified, all output files will be written to specified, preallocated folder
-s

Generate source code only; do not compile type-safe API source into an assembly
-v vx.x

Version of Microsoft .NET Framework (csc compiler) used to generate type-safe API
assembly (for example v2.0)

Incompatible with -s.
-w name_of_generated_type-safe_API_wrapper_class_and_assembly

Optional. If specified, overrides default name of generated type-safe API class and
assembly

Incompatible with -c.

Outputs

ComponentInterface.dll

.NET binary containing type-safe API class. Requires
ComponentNative.dll,Interface.dll and MWArray.dll

ComponentInterface.cs

Optional output, produced by -s and -k

Examples
ntswrap.exe -c AddOneComp.Mechanism

 ntswrap

13-5

 -i IAddOne

 -a IAddOne.dll

Issuing this command generates a type-safe API for the MATLAB Compiler SDK class
Mechanism in the namespace AddOneCompNative. By default, ntswrap compiles the
source code into an assembly MechanismIAddOne.dll.

A

Deploying .NET Components With the F#
Programming Language

A Magic Square Using F#

A-2

Magic Square Using F#

The F# programming language offers the opportunity to implement the same solutions
you usually implement using C#, but with less code. This can be helpful when scaling
a deployment solution across an enterprise-wide installation, or in any situation where
code efficiency is valued. The brevity of F# programs can also make them easier to
maintain.

The following example summarizes how to integrate the deployable MATLAB magic
function from “Create a .NET Assembly”.

You must be running Microsoft Visual Studio 2010 or higher to use this example.

For more information about the F# language, go to http://fsharp.net.

Prerequisites

If you build this example on a system running 64-bit Microsoft Visual Studio, you must
add a reference to the 32-bit MWArray DLL due to a current imitation of Microsoft's F#
compiler.

Step 1: Build the Component

Build the makeSqr component using the instructions in “Create a .NET Assembly”.

Step 2: Integrate the Component Into an F# Application

1 Using Microsoft Visual Studio 2010 or higher, create an F# project.
2 Add references to your component and MWArray in Visual Studio.
3 Make the .NET namespaces available for your component and MWArray libraries:

open makeSqr

open MathWorks.MATLAB.NET.Arrays

4 Define the Magic Square function with an initial let statement, as follows:

let magic n =

Then, add the following statements to complete the function definition.

a Instantiate the Magic Square component:

http://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://fsharp.net

 Magic Square Using F#

A-3

use magicComp = new makeSqr.MLTestClass()

b Define the input argument:

use inarg = new MWNumericArray((int) n)

c Call MATLAB, get the output argument cell array, and extract the first element
as a two–dimensional float array:

(magicComp.makesquare(1, inarg).[0].ToArray() :?> float[,])

The complete function definition looks like this:

let magic n =

 // Instantiate the magic square component

 use magicComp = new makeSqr.MLTestClass()

 // Define the input argument

 use inarg = new MWNumericArray((int) n)

 // Call MATLAB, get the output argument cell array,

 // extract the first element as a 2D float array

 (magicComp.makesquare(1, inarg).[0].ToArray()

 :?> float[,])

5 Add another let statement to define the output display logic:

let printMagic n =

 let numArray = magic n

 // Display the output

 printfn "Number of [rows,cols]: [%d,%d]"

 (numArray.GetLength(0)) (numArray.GetLength(1))

 printfn ""

 for i in 0 .. numArray.GetLength(0)-1 do

 for j in 0 .. numArray.GetLength(1)-1 do

 printf "%3.0f " numArray.[i,j]

 printfn ""

 printfn "=========================\n"

ignore(List.iter printMagic [1..19])

// Pause until keypress

ignore(System.Console.ReadKey())

The complete program listing follows:

The F# Magic Square Program

open makeSqr

A Magic Square Using F#

A-4

open MathWorks.MATLAB.NET.Arrays

let magic n =

 // Instantiate the magic square component

 use magicComp = new makeSqr.MLTestClass()

 // Define the input argument

 use inarg = new MWNumericArray((int) n)

 // Call MATLAB, get the output argument cell array,

 // extract the first element as a 2D float array

 (magicComp.makesquare(1, inarg).[0].ToArray() :?> float[,])

let printMagic n =

 let numArray = magic n

 // Display the output

 printfn "Number of [rows,cols]: [%d,%d]"

 (numArray.GetLength(0)) (numArray.GetLength(1))

 printfn ""

 for i in 0 .. numArray.GetLength(0)-1 do

 for j in 0 .. numArray.GetLength(1)-1 do

 printf "%3.0f " numArray.[i,j]

 printfn ""

 printfn "=========================\n"

ignore(List.iter printMagic [1..19])

// Pause until keypress

ignore(System.Console.ReadKey())

Step 3: Deploy the Component

See “Install MATLAB Runtime” on page 6-2 for information about deploying your
component to end users.

